These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31563321)

  • 1. Statistical coupling analysis uncovers sites crucial for the proton transfer in laccase Lac15.
    Wang R; Cheng Y; Xie Y; Li J; Zhang Y; Fang Z; Fang W; Zhang X; Xiao Y
    Biochem Biophys Res Commun; 2019 Nov; 519(4):894-900. PubMed ID: 31563321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of the salt activation of laccase Lac15.
    Li Z; Jiang S; Xie Y; Fang Z; Xiao Y; Fang W; Zhang X
    Biochem Biophys Res Commun; 2020 Jan; 521(4):997-1002. PubMed ID: 31727364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase.
    Sakurai T; Kataoka K
    Chem Rec; 2007; 7(4):220-9. PubMed ID: 17663447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure, functionality and tuning up of laccases for lignocellulose and other industrial applications.
    Sitarz AK; Mikkelsen JD; Meyer AS
    Crit Rev Biotechnol; 2016; 36(1):70-86. PubMed ID: 25198436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of an ascomycete fungal laccase from Thielavia arenaria--common structural features of asco-laccases.
    Kallio JP; Gasparetti C; Andberg M; Boer H; Koivula A; Kruus K; Rouvinen J; Hakulinen N
    FEBS J; 2011 Jul; 278(13):2283-95. PubMed ID: 21535408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of positive charged residue in the proton-transfer mechanism of two-domain laccase from
    Gabdulkhakov A; Kolyadenko I; Oliveira P; Tamagnini P; Mikhaylina A; Tishchenko S
    J Biomol Struct Dyn; 2022 Nov; 40(18):8324-8331. PubMed ID: 33870857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional roles of glycosylation in fungal laccase from Lentinus sp.
    Maestre-Reyna M; Liu WC; Jeng WY; Lee CC; Hsu CA; Wen TN; Wang AH; Shyur LF
    PLoS One; 2015; 10(4):e0120601. PubMed ID: 25849464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of salt-induced activity enhancement of a marine-derived laccase, Lac15.
    Li J; Xie Y; Wang R; Fang Z; Fang W; Zhang X; Xiao Y
    Eur Biophys J; 2018 Apr; 47(3):225-236. PubMed ID: 28875401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laccases: a never-ending story.
    Giardina P; Faraco V; Pezzella C; Piscitelli A; Vanhulle S; Sannia G
    Cell Mol Life Sci; 2010 Feb; 67(3):369-85. PubMed ID: 19844659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative structural analysis of the surface properties of asco-laccases.
    Ernst HA; Jørgensen LJ; Bukh C; Piontek K; Plattner DA; Østergaard LH; Larsen S; Bjerrum MJ
    PLoS One; 2018; 13(11):e0206589. PubMed ID: 30395580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Docking simulation and competitive experiments validate the interaction between the 2,5-xylidine inhibitor and Rigidoporus lignosus laccase.
    Cambria MT; Di Marino D; Falconi M; Garavaglia S; Cambria A
    J Biomol Struct Dyn; 2010 Feb; 27(4):501-10. PubMed ID: 19916571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms underlying dioxygen reduction in laccases. Structural and modelling studies focusing on proton transfer.
    Bento I; Silva CS; Chen Z; Martins LO; Lindley PF; Soares CM
    BMC Struct Biol; 2010 Sep; 10():28. PubMed ID: 20822511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Four second-sphere residues of Thermus thermophilus SG0.5JP17-16 laccase tune the catalysis by hydrogen-bonding networks.
    Liu H; Zhu Y; Yang X; Lin Y
    Appl Microbiol Biotechnol; 2018 May; 102(9):4049-4061. PubMed ID: 29516147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concerted electron/proton transfer mechanism in the oxidation of phenols by laccase.
    Galli C; Madzak C; Vadalà R; Jolivalt C; Gentili P
    Chembiochem; 2013 Dec; 14(18):2500-5. PubMed ID: 24151197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of Asp116 in the reductive cleavage of dioxygen to water in CotA laccase: assistance during the proton-transfer mechanism.
    Silva CS; Damas JM; Chen Z; Brissos V; Martins LO; Soares CM; Lindley PF; Bento I
    Acta Crystallogr D Biol Crystallogr; 2012 Feb; 68(Pt 2):186-93. PubMed ID: 22281748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laccase of Cyathus bulleri: structural, catalytic characterization and expression in Escherichia coli.
    Salony ; Garg N; Baranwal R; Chhabra M; Mishra S; Chaudhuri TK; Bisaria VS
    Biochim Biophys Acta; 2008 Feb; 1784(2):259-68. PubMed ID: 18083129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Structure, catalytic mechanism and applications of laccases: a review].
    Ge H; Wu Y; Xiao Y
    Sheng Wu Gong Cheng Xue Bao; 2011 Feb; 27(2):156-63. PubMed ID: 21650039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of catalysis and functional expression of a bacterial laccase by single amino acid replacement.
    Nasoohi N; Khajeh K; Mohammadian M; Ranjbar B
    Int J Biol Macromol; 2013 Sep; 60():56-61. PubMed ID: 23707861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the C-terminus of Pleurotus eryngii Ery4 laccase in determining enzyme structure, catalytic properties and stability.
    Bleve G; Lezzi C; Spagnolo S; Tasco G; Tufariello M; Casadio R; Mita G; Rampino P; Grieco F
    Protein Eng Des Sel; 2013 Jan; 26(1):1-13. PubMed ID: 22996391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A bacterial laccase from marine microbial metagenome exhibiting chloride tolerance and dye decolorization ability.
    Fang Z; Li T; Wang Q; Zhang X; Peng H; Fang W; Hong Y; Ge H; Xiao Y
    Appl Microbiol Biotechnol; 2011 Feb; 89(4):1103-10. PubMed ID: 20963410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.