These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31563443)

  • 21. On-chip electrochemical measurement of beta-galactosidase expression using a microbial chip.
    Kaya T; Nagamine K; Matsui N; Yasukawa T; Shiku H; Matsue T
    Chem Commun (Camb); 2004 Jan; (2):248-9. PubMed ID: 14737572
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fast mixing and reaction initiation control of single-enzyme kinetics in confined volumes.
    Jung SY; Liu Y; Collier CP
    Langmuir; 2008 May; 24(9):4439-42. PubMed ID: 18361535
    [TBL] [Abstract][Full Text] [Related]  

  • 23. β-Galactosidase Langmuir Monolayer at Air/X-gal Subphase Interface.
    Sharma SK; Li S; Micic M; Orbulescu J; Weissbart D; Nakahara H; Shibata O; Leblanc RM
    J Phys Chem B; 2016 Dec; 120(48):12279-12286. PubMed ID: 27934226
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Restricted intramolecular rotation of fluorescent molecular rotors at the periphery of aqueous microdroplets in oil.
    Kang J; Lhee S; Lee JK; Zare RN; Nam HG
    Sci Rep; 2020 Oct; 10(1):16859. PubMed ID: 33033365
    [TBL] [Abstract][Full Text] [Related]  

  • 25. No intermediate channelling in stepwise hydrolysis of fluorescein di-beta-D-galactoside by beta-galactosidase.
    Fieldler F; Hinz H
    Eur J Biochem; 1994 May; 222(1):75-81. PubMed ID: 8200355
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Specific tritium labeling of beta-D-galactofuranosides at the 6-position: a tool for beta-D-galactofuranosidase detection.
    Mariño K; Marino C; de Lederkremer RM
    Anal Biochem; 2002 Feb; 301(2):325-8. PubMed ID: 11814303
    [No Abstract]   [Full Text] [Related]  

  • 27. Monitoring picoliter sessile microdroplet dynamics shows that size does not matter.
    Rodríguez-Ruiz I; Hammadi Z; Grossier R; Gómez-Morales J; Veesler S
    Langmuir; 2013 Oct; 29(41):12628-32. PubMed ID: 24070240
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A reusable microfluidic device provides continuous measurement capability and improves the detection limit of digital biology.
    Araci IE; Robles M; Quake SR
    Lab Chip; 2016 Apr; 16(9):1573-8. PubMed ID: 27072314
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic selective concentration of microdroplet contents by spontaneous emulsification.
    Fukuyama M; Hibara A
    Anal Chem; 2015 Apr; 87(7):3562-5. PubMed ID: 25760305
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure-reactivity relationships for beta-galactosidase (Escherichia coli, lac Z). 2. Reactions of the galactosyl-enzyme intermediate with alcohols and azide ion.
    Richard JP; Westerfeld JG; Lin S; Beard J
    Biochemistry; 1995 Sep; 34(37):11713-24. PubMed ID: 7547903
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integration of on-column immobilized enzyme reactor in microchip electrophoresis.
    Park SS; Cho SI; Kim MS; Kim YK; Kim BG
    Electrophoresis; 2003 Jan; 24(1-2):200-6. PubMed ID: 12652592
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of digitized video microscopy with a fluorogenic enzyme substrate to demonstrate cell- and compartment-specific gene expression in Salmonella enteritidis and Bacillus subtilis.
    Lewis PJ; Nwoguh CE; Barer MR; Harwood CR; Errington J
    Mol Microbiol; 1994 Aug; 13(4):655-62. PubMed ID: 7997177
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microchannels Formed Using Metal Microdroplets.
    Zhang D; Jing C; Guo W; Xiao Y; Luo J; Qi L
    Micromachines (Basel); 2023 Oct; 14(10):. PubMed ID: 37893359
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Water Microdroplets Allow Spontaneously Abiotic Production of Peptides.
    Wang W; Qiao L; He J; Ju Y; Yu K; Kan G; Guo C; Zhang H; Jiang J
    J Phys Chem Lett; 2021 Jun; 12(24):5774-5780. PubMed ID: 34134488
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetic fluorescence measurement of fluorescein di-beta-D-galactoside hydrolysis by beta-galactosidase: intermediate channeling in stepwise catalysis by a free single enzyme.
    Huang ZJ
    Biochemistry; 1991 Sep; 30(35):8535-40. PubMed ID: 1909566
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adhesion of Microdroplets on Water-Repellent Surfaces toward the Prevention of Surface Fouling and Pathogen Spreading by Respiratory Droplets.
    Jiang J; Zhang H; He W; Li T; Li H; Liu P; Liu M; Wang Z; Wang Z; Yao X
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6599-6608. PubMed ID: 28121417
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microstructure of microemulsion in MEEKC.
    Cao Y; Sheng J
    Electrophoresis; 2010 Jan; 31(4):672-8. PubMed ID: 20162591
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Timing controllable electrofusion device for aqueous droplet-based microreactors.
    Tan WH; Takeuchi S
    Lab Chip; 2006 Jun; 6(6):757-63. PubMed ID: 16738727
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic assay of fluorescein mono-beta-D-galactoside hydrolysis by beta-galactosidase: a front-face measurement for strongly absorbing fluorogenic substrates.
    Huang ZJ
    Biochemistry; 1991 Sep; 30(35):8530-4. PubMed ID: 1909565
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NIR light-triggered bursting of double-emulsion drops (DEDs) for microdroplet generation.
    Lu Z; Yu J; Wang K; Cheng W; Hou L
    Anal Methods; 2024 Oct; 16(38):6501-6508. PubMed ID: 39240212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.