BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31563541)

  • 1. RNA-centric approaches to study RNA-protein interactions in vitro and in silico.
    Dasti A; Cid-Samper F; Bechara E; Tartaglia GG
    Methods; 2020 Jun; 178():11-18. PubMed ID: 31563541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA Bind-n-Seq: Measuring the Binding Affinity Landscape of RNA-Binding Proteins.
    Lambert NJ; Robertson AD; Burge CB
    Methods Enzymol; 2015; 558():465-493. PubMed ID: 26068750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ssHMM: extracting intuitive sequence-structure motifs from high-throughput RNA-binding protein data.
    Heller D; Krestel R; Ohler U; Vingron M; Marsico A
    Nucleic Acids Res; 2017 Nov; 45(19):11004-11018. PubMed ID: 28977546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA Sequence Context Effects Measured In Vitro Predict In Vivo Protein Binding and Regulation.
    Taliaferro JM; Lambert NJ; Sudmant PH; Dominguez D; Merkin JJ; Alexis MS; Bazile C; Burge CB
    Mol Cell; 2016 Oct; 64(2):294-306. PubMed ID: 27720642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GraphProt: modeling binding preferences of RNA-binding proteins.
    Maticzka D; Lange SJ; Costa F; Backofen R
    Genome Biol; 2014 Jan; 15(1):R17. PubMed ID: 24451197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence, Structure, and Context Preferences of Human RNA Binding Proteins.
    Dominguez D; Freese P; Alexis MS; Su A; Hochman M; Palden T; Bazile C; Lambert NJ; Van Nostrand EL; Pratt GA; Yeo GW; Graveley BR; Burge CB
    Mol Cell; 2018 Jun; 70(5):854-867.e9. PubMed ID: 29883606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finding the target sites of RNA-binding proteins.
    Li X; Kazan H; Lipshitz HD; Morris QD
    Wiley Interdiscip Rev RNA; 2014; 5(1):111-30. PubMed ID: 24217996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Identification of Post Translational Modification Regulated RNA Binding Protein Motifs.
    Brown AS; Mohanty BK; Howe PH
    PLoS One; 2015; 10(9):e0137696. PubMed ID: 26368004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding specificities of human RNA-binding proteins toward structured and linear RNA sequences.
    Jolma A; Zhang J; Mondragón E; Morgunova E; Kivioja T; Laverty KU; Yin Y; Zhu F; Bourenkov G; Morris Q; Hughes TR; Maher LJ; Taipale J
    Genome Res; 2020 Jul; 30(7):962-973. PubMed ID: 32703884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissecting the expression relationships between RNA-binding proteins and their cognate targets in eukaryotic post-transcriptional regulatory networks.
    Nishtala S; Neelamraju Y; Janga SC
    Sci Rep; 2016 May; 6():25711. PubMed ID: 27161996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep neural networks for interpreting RNA-binding protein target preferences.
    Ghanbari M; Ohler U
    Genome Res; 2020 Feb; 30(2):214-226. PubMed ID: 31992613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A combined sequence and structure based method for discovering enriched motifs in RNA from in vivo binding data.
    Polishchuk M; Paz I; Kohen R; Mesika R; Yakhini Z; Mandel-Gutfreund Y
    Methods; 2017 Apr; 118-119():73-81. PubMed ID: 28274760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SARNAclust: Semi-automatic detection of RNA protein binding motifs from immunoprecipitation data.
    Dotu I; Adamson SI; Coleman B; Fournier C; Ricart-Altimiras E; Eyras E; Chuang JH
    PLoS Comput Biol; 2018 Mar; 14(3):e1006078. PubMed ID: 29596423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of binding property of RNA-binding proteins using multi-sized filters and multi-modal deep convolutional neural network.
    Chung T; Kim D
    PLoS One; 2019; 14(4):e0216257. PubMed ID: 31026297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human protein-RNA interaction network is highly stable across mammals.
    Ramakrishnan A; Janga SC
    BMC Genomics; 2019 Dec; 20(Suppl 12):1004. PubMed ID: 31888461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finding RNA structure in the unstructured RBPome.
    Orenstein Y; Ohler U; Berger B
    BMC Genomics; 2018 Feb; 19(1):154. PubMed ID: 29463232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Matrix-screening reveals a vast potential for direct protein-protein interactions among RNA binding proteins.
    Lang B; Yang JS; Garriga-Canut M; Speroni S; Aschern M; Gili M; Hoffmann T; Tartaglia GG; Maurer SP
    Nucleic Acids Res; 2021 Jul; 49(12):6702-6721. PubMed ID: 34133714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RBPmap: A Tool for Mapping and Predicting the Binding Sites of RNA-Binding Proteins Considering the Motif Environment.
    Paz I; Argoetti A; Cohen N; Even N; Mandel-Gutfreund Y
    Methods Mol Biol; 2022; 2404():53-65. PubMed ID: 34694603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prevalent RNA recognition motif duplication in the human genome.
    Tsai YS; Gomez SM; Wang Z
    RNA; 2014 May; 20(5):702-12. PubMed ID: 24667216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.