These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 31563576)

  • 1. Rapid motor cortical plasticity can be induced by motor imagery training.
    Yoxon E; Welsh TN
    Neuropsychologia; 2019 Nov; 134():107206. PubMed ID: 31563576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor system activation during motor imagery is positively related to the magnitude of cortical plastic changes following motor imagery training.
    Yoxon E; Welsh TN
    Behav Brain Res; 2020 Jul; 390():112685. PubMed ID: 32428633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavioural indexes of movement imagery ability are associated with the magnitude of corticospinal adaptation following movement imagery training.
    Yoxon E; Brillinger M; Welsh TN
    Brain Res; 2022 Feb; 1777():147764. PubMed ID: 34951972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diminution of training-induced transient motor cortex plasticity by weak transcranial direct current stimulation in the human.
    Rosenkranz K; Nitsche MA; Tergau F; Paulus W
    Neurosci Lett; 2000 Dec; 296(1):61-3. PubMed ID: 11099834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid plasticity of motor corticospinal system with robotic reach training.
    Kantak SS; Jones-Lush LM; Narayanan P; Judkins TN; Wittenberg GF
    Neuroscience; 2013 Sep; 247():55-64. PubMed ID: 23669007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concurrent action observation modulates practice-induced motor memory formation.
    Stefan K; Classen J; Celnik P; Cohen LG
    Eur J Neurosci; 2008 Feb; 27(3):730-8. PubMed ID: 18279325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An acute session of motor imagery training induces use-dependent plasticity.
    Ruffino C; Gaveau J; Papaxanthis C; Lebon F
    Sci Rep; 2019 Dec; 9(1):20002. PubMed ID: 31882851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time course of changes in corticospinal excitability induced by motor imagery during action observation combined with peripheral nerve electrical stimulation.
    Yasui T; Yamaguchi T; Tanabe S; Tatemoto T; Takahashi Y; Kondo K; Kawakami M
    Exp Brain Res; 2019 Mar; 237(3):637-645. PubMed ID: 30536148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of plasticity in the human motor system by motor imagery and transcranial magnetic stimulation.
    Foysal KMR; Baker SN
    J Physiol; 2020 Jun; 598(12):2385-2396. PubMed ID: 32266976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-selected conscious strategies do not modulate motor cortical output during action observation.
    Naish KR; Obhi SS
    J Neurophysiol; 2015 Oct; 114(4):2278-84. PubMed ID: 26311182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of a single dose of fluoxetine on practice-dependent plasticity.
    McDonnell MN; Zipser C; Darmani G; Ziemann U; Müller-Dahlhaus F
    Clin Neurophysiol; 2018 Jul; 129(7):1349-1356. PubMed ID: 29729588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of coordination mode on use-dependent plasticity.
    Ackerley SJ; Stinear CM; Byblow WD
    Clin Neurophysiol; 2007 Aug; 118(8):1759-66. PubMed ID: 17569579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motor imagery beyond the joint limits: a transcranial magnetic stimulation study.
    Bufalari I; Sforza A; Cesari P; Aglioti SM; Fourkas AD
    Biol Psychol; 2010 Oct; 85(2):283-90. PubMed ID: 20688131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor training and the combination of action observation and peripheral nerve stimulation reciprocally interfere with the plastic changes induced in primary motor cortex excitability.
    Bisio A; Avanzino L; Biggio M; Ruggeri P; Bove M
    Neuroscience; 2017 Apr; 348():33-40. PubMed ID: 28214579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition or facilitation? Modulation of corticospinal excitability during motor imagery.
    Bruno V; Fossataro C; Garbarini F
    Neuropsychologia; 2018 Mar; 111():360-368. PubMed ID: 29462639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid plasticity of human cortical movement representation induced by practice.
    Classen J; Liepert J; Wise SP; Hallett M; Cohen LG
    J Neurophysiol; 1998 Feb; 79(2):1117-23. PubMed ID: 9463469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversal of TMS-induced motor twitch by training is associated with a reduction in excitability of the antagonist muscle.
    Giacobbe V; Volpe BT; Thickbroom GW; Fregni F; Pascual-Leone A; Krebs HI; Edwards DJ
    J Neuroeng Rehabil; 2011 Aug; 8():46. PubMed ID: 21861922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent History of Effector Use Modulates Practice-Dependent Changes in Corticospinal Excitability but Not Motor Learning.
    Hussain SJ; Darling WG; Cole KJ
    Brain Stimul; 2016; 9(4):584-93. PubMed ID: 27117281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corticomotor plasticity and learning of a ballistic thumb training task are diminished in older adults.
    Rogasch NC; Dartnall TJ; Cirillo J; Nordstrom MA; Semmler JG
    J Appl Physiol (1985); 2009 Dec; 107(6):1874-83. PubMed ID: 19833810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effector-independent representations of simple and complex imagined finger movements: a combined fMRI and TMS study.
    Kuhtz-Buschbeck JP; Mahnkopf C; Holzknecht C; Siebner H; Ulmer S; Jansen O
    Eur J Neurosci; 2003 Dec; 18(12):3375-87. PubMed ID: 14686911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.