BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 31563633)

  • 1. Simulated biological fluid exposure changes nanoceria's surface properties but not its biological response.
    Yokel RA; Hancock ML; Cherian B; Brooks AJ; Ensor ML; Vekaria HJ; Sullivan PG; Grulke EA
    Eur J Pharm Biopharm; 2019 Nov; 144():252-265. PubMed ID: 31563633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of cerium redox state in the SOD mimetic activity of nanoceria.
    Heckert EG; Karakoti AS; Seal S; Self WT
    Biomaterials; 2008 Jun; 29(18):2705-9. PubMed ID: 18395249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerium oxide based nanozymes: Redox phenomenon at biointerfaces.
    Singh S
    Biointerphases; 2016 Nov; 11(4):04B202. PubMed ID: 27806579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphotungstate-sandwiched between cerium oxide and gold nanoparticles exhibit enhanced catalytic reduction of 4-nitrophenol and peroxidase enzyme-like activity.
    Shah F; Yadav N; Singh S
    Colloids Surf B Biointerfaces; 2021 Feb; 198():111478. PubMed ID: 33272726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoceria distribution and effects are mouse-strain dependent.
    Yokel RA; Tseng MT; Butterfield DA; Hancock ML; Grulke EA; Unrine JM; Stromberg AJ; Dozier AK; Graham UM
    Nanotoxicology; 2020 Aug; 14(6):827-846. PubMed ID: 32552239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular uptake and activity of heparin functionalised cerium oxide nanoparticles in monocytes.
    Ting SR; Whitelock JM; Tomic R; Gunawan C; Teoh WY; Amal R; Lord MS
    Biomaterials; 2013 Jun; 34(17):4377-86. PubMed ID: 23478040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Yin: An adverse health perspective of nanoceria: uptake, distribution, accumulation, and mechanisms of its toxicity.
    Yokel RA; Hussain S; Garantziotis S; Demokritou P; Castranova V; Cassee FR
    Environ Sci Nano; 2014 Oct; 1(5):406-428. PubMed ID: 25243070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles.
    Asati A; Santra S; Kaittanis C; Perez JM
    ACS Nano; 2010 Sep; 4(9):5321-31. PubMed ID: 20690607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treatment of Human Lens Epithelium with High Levels of Nanoceria Leads to Reactive Oxygen Species Mediated Apoptosis.
    Hanafy BI; Cave GWV; Barnett Y; Pierscionek B
    Molecules; 2020 Jan; 25(3):. PubMed ID: 31973133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytotoxicity of ultrafine monodispersed nanoceria on human gastric cancer cells.
    Li C; Zhao W; Liu B; Xu G; Liu L; Lv H; Shang D; Yang D; Damirin A; Zhang J
    J Biomed Nanotechnol; 2014 Jul; 10(7):1231-41. PubMed ID: 24804543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox reactivity of cerium oxide nanoparticles against dopamine.
    Hayat A; Andreescu D; Bulbul G; Andreescu S
    J Colloid Interface Sci; 2014 Mar; 418():240-5. PubMed ID: 24461841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoceria as bona fide catalytic antioxidants in medicine: what we know and what we want to know….
    Wong LL; McGinnis JF
    Adv Exp Med Biol; 2014; 801():821-8. PubMed ID: 24664776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carboxylic acids accelerate acidic environment-mediated nanoceria dissolution.
    Yokel RA; Hancock ML; Grulke EA; Unrine JM; Dozier AK; Graham UM
    Nanotoxicology; 2019 May; 13(4):455-475. PubMed ID: 30729879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo toxicological evaluation of polymer brush engineered nanoceria: impact of brush charge.
    Catalán J; Fascineli ML; Politakos N; Hartikainen M; Garcia MP; Cáceres-Vélez PR; Moreno C; Silva SWD; Morais PC; Norppa H; Moya SE; Azevedo RB
    Nanotoxicology; 2019 Apr; 13(3):305-325. PubMed ID: 30582398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerium oxide nanoparticles protect rodent lungs from hypobaric hypoxia-induced oxidative stress and inflammation.
    Arya A; Sethy NK; Singh SK; Das M; Bhargava K
    Int J Nanomedicine; 2013; 8():4507-20. PubMed ID: 24294000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endocytosis of cerium oxide nanoparticles and modulation of reactive oxygen species in human ovarian and colon cancer cells.
    Vassie JA; Whitelock JM; Lord MS
    Acta Biomater; 2017 Mar; 50():127-141. PubMed ID: 27940194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-tunable oxidase-like activity of cerium oxide nanoparticles achieving sensitive fluorigenic detection of cancer biomarkers at neutral pH.
    Asati A; Kaittanis C; Santra S; Perez JM
    Anal Chem; 2011 Apr; 83(7):2547-53. PubMed ID: 21370817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the Synthesis Scheme of Nanocrystalline Cerium Oxide and Its Concentration on the Biological Activity of Cells Providing Wound Regeneration.
    Silina EV; Stupin VA; Manturova NE; Ivanova OS; Popov AL; Mysina EA; Artyushkova EB; Kryukov AA; Dodonova SA; Kruglova MP; Tinkov AA; Skalny AV; Ivanov VK
    Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37833949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular antioxidants dissolve man-made antioxidant nanoparticles: using redox vulnerability of nanoceria to develop a responsive drug delivery system.
    Muhammad F; Wang A; Qi W; Zhang S; Zhu G
    ACS Appl Mater Interfaces; 2014; 6(21):19424-33. PubMed ID: 25312332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anionic Cerium Oxide Nanoparticles Protect Plant Photosynthesis from Abiotic Stress by Scavenging Reactive Oxygen Species.
    Wu H; Tito N; Giraldo JP
    ACS Nano; 2017 Nov; 11(11):11283-11297. PubMed ID: 29099581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.