These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 31563976)

  • 1. A phase diagram-based toolbox to assess the impact of freeze/thaw ramps on the phase behavior of proteins.
    Wöll AK; Desombre M; Enghauser L; Hubbuch J
    Bioprocess Biosyst Eng; 2020 Feb; 43(2):179-192. PubMed ID: 31563976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of phase behavior and morphology during freeze-thaw applications of lysozyme.
    Wöll AK; Schütz J; Zabel J; Hubbuch J
    Int J Pharm; 2019 Jan; 555():153-164. PubMed ID: 30458258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the reversibility of freeze/thaw stress-induced protein instability using heat cycling as a function of different cryoprotectants.
    Wöll AK; Hubbuch J
    Bioprocess Biosyst Eng; 2020 Jul; 43(7):1309-1327. PubMed ID: 32198550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of fulvic acid and fulvic ions on Escherichia coli survival in river under repeated freeze-thaw cycles.
    Wang X; Zhang D; Chen W; Tao J; Xu M; Guo P
    Environ Pollut; 2019 Apr; 247():1100-1109. PubMed ID: 30823339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fundamentals of freeze-drying.
    Nail SL; Jiang S; Chongprasert S; Knopp SA
    Pharm Biotechnol; 2002; 14():281-360. PubMed ID: 12189727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature Based Process Characterization of Pharmaceutical Freeze-Thaw Operations.
    Weber D; Hubbuch J
    Front Bioeng Biotechnol; 2021; 9():617770. PubMed ID: 33898399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies to Minimize Various Stress-Related Freeze-Thaw Damages During Conventional Cryopreservation of Mammalian Spermatozoa.
    Kumar A; Prasad JK; Srivastava N; Ghosh SK
    Biopreserv Biobank; 2019 Dec; 17(6):603-612. PubMed ID: 31429586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and Characterization of Quinoa Protein Nanoparticle-Stabilized Food-Grade Pickering Emulsions with Ultrasound Treatment: Effect of Ionic Strength on the Freeze-Thaw Stability.
    Qin XS; Luo ZG; Peng XC; Lu XX; Zou YX
    J Agric Food Chem; 2018 Aug; 66(31):8363-8370. PubMed ID: 30016098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freezing and glass transitions upon cooling and warming and ice/freeze-concentration-solution morphology of emulsified aqueous citric acid.
    Bogdan A; Molina MJ; Tenhu H
    Eur J Pharm Biopharm; 2016 Dec; 109():49-60. PubMed ID: 27664024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freezing and melting behavior of an octyl β-D-glucoside-water binary system--inhibitory effect of octyl β-D-glucoside on ice crystal formation.
    Ogawa S; Asakura K; Osanai S
    Phys Chem Chem Phys; 2012 Dec; 14(47):16312-20. PubMed ID: 23133837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport, motility, biofilm forming potential and survival of Bacillus subtilis exposed to cold temperature and freeze-thaw.
    Asadishad B; Olsson AL; Dusane DH; Ghoshal S; Tufenkji N
    Water Res; 2014 Jul; 58():239-47. PubMed ID: 24768703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Considerations on Protein Stability During Freezing and Its Impact on the Freeze-Drying Cycle: A Design Space Approach.
    Arsiccio A; Giorsello P; Marenco L; Pisano R
    J Pharm Sci; 2020 Jan; 109(1):464-475. PubMed ID: 31647953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A low membrane lipid phase transition temperature is associated with a high cryotolerance of Lactobacillus delbrueckii subspecies bulgaricus CFL1.
    Gautier J; Passot S; Pénicaud C; Guillemin H; Cenard S; Lieben P; Fonseca F
    J Dairy Sci; 2013 Sep; 96(9):5591-602. PubMed ID: 23810590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Uncontrolled vs Controlled Rate Freeze-Thaw Technologies on Process Performance and Product Quality.
    Padala C; Jameel F; Rathore N; Gupta K; Sethuraman A
    PDA J Pharm Sci Technol; 2010; 64(4):290-8. PubMed ID: 21502029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Impact of Repeated Freeze-Thaw Cycles on the Quality of Biomolecules in Four Different Tissues.
    Ji X; Wang M; Li L; Chen F; Zhang Y; Li Q; Zhou J
    Biopreserv Biobank; 2017 Oct; 15(5):475-483. PubMed ID: 28930488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Freeze-Thaw Treatment on the Precipitation of Octyl β-D-Galactoside Hemihydrate Crystal from the Aqueous Solution.
    Ogawa S; Takahashi I; Koga M; Asakura K; Osanai S
    J Oleo Sci; 2018 May; 67(5):627-637. PubMed ID: 29628491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Storage of bovine reproductive tissues and RNA extracts on ice for 24 h or repeated freeze-thaw cycles do not affect RNA integrity.
    França MR; Mesquita FS; Binelli M
    Reprod Domest Anim; 2014 Feb; 49(1):e9-e11. PubMed ID: 24303795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of experiments reveals critical parameters for pilot-scale freeze-and-thaw processing of L-lactic dehydrogenase.
    Roessl U; Humi S; Leitgeb S; Nidetzky B
    Biotechnol J; 2015 Sep; 10(9):1390-9. PubMed ID: 25820483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repeated freezing induces oxidative stress and reduces survival in the freeze-tolerant goldenrod gall fly, Eurosta solidaginis.
    Doelling AR; Griffis N; Williams JB
    J Insect Physiol; 2014 Aug; 67():20-7. PubMed ID: 24910457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.