These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 3156406)

  • 1. Thermosensitivity of a DNA recognition site: activity of a truncated nutL antiterminator of coliphage lambda.
    Peltz SW; Brown AL; Hasan N; Podhajska AJ; Szybalski W
    Science; 1985 Apr; 228(4695):91-3. PubMed ID: 3156406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boundaries of the nutL antiterminator of coliphage lambda and effects of mutations in the spacer region between boxA and boxB.
    Hasan N; Szybalski W
    Gene; 1986; 50(1-3):87-96. PubMed ID: 2953653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of the nutL DNA segments and analysis of antitermination and termination functions in coliphage lambda.
    Drahos D; Galluppi GR; Caruthers M; Szybalski W
    Gene; 1982 Jun; 18(3):343-54. PubMed ID: 6290338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antitermination and termination functions of the cloned nutL, N, and tL1 modules of coliphage lambda.
    Drahos D; Szybalski W
    Gene; 1981 Dec; 16(1-3):261-74. PubMed ID: 6211393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional antitermination activity of the synthetic nut elements of coliphage lambda. I. Assembly of the nutR recognition site from boxA and nut core elements.
    Brown AL; Szybalski W
    Gene; 1986; 42(1):E125-32. PubMed ID: 2941338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the promoter structure on the nutL transcription antitermination function.
    Hasan N; Szybalski W
    Gene; 1986; 50(1-3):97-100. PubMed ID: 2953654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional antitermination activity of the synthetic nut elements of coliphage lambda. I. Assembly of the nutR recognition site from boxA and nut core elements.
    Brown AL; Szybalski W
    Gene; 1985; 39(2-3):121-7. PubMed ID: 3005108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and sequencing of the region containing gene N, the nutL site and tL1 terminator of bacteriophage phi 80.
    Tanaka S; Matsushiro A
    Gene; 1985; 38(1-3):119-29. PubMed ID: 4065570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of nutR, a site required for transcription antitermination in phage lambda.
    Zuber M; Patterson TA; Court DL
    Proc Natl Acad Sci U S A; 1987 Jul; 84(13):4514-8. PubMed ID: 2955408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations of the phage lambda nutL region that prevent the action of Nun, a site-specific transcription termination factor.
    Baron J; Weisberg RA
    J Bacteriol; 1992 Mar; 174(6):1983-9. PubMed ID: 1532174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence changes in coliphage lambda mutants affecting the nutL antitermination site and termination by tL1 and tL2.
    Somasekhar G; Drahos D; Salstrom JS; Szybalski W
    Gene; 1982 Dec; 20(3):477-80. PubMed ID: 6219918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription-dependent competition for a host factor: the function and optimal sequence of the phage lambda boxA transcription antitermination signal.
    Friedman DI; Olson ER; Johnson LL; Alessi D; Craven MG
    Genes Dev; 1990 Dec; 4(12A):2210-22. PubMed ID: 2148536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recognition of boxA antiterminator RNA by the E. coli antitermination factors NusB and ribosomal protein S10.
    Nodwell JR; Greenblatt J
    Cell; 1993 Jan; 72(2):261-8. PubMed ID: 7678781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of cloned gene expression by promoter inversion in vivo: construction of the heat-pulse-activated att-nutL-p-att-N module.
    Podhajska AJ; Hasan N; Szybalski W
    Gene; 1985; 40(1):163-8. PubMed ID: 3005124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The functional boundaries of the Q-utilization site required for antitermination of late transcription in bacteriophage lambda.
    Somasekhar G; Szybalski W
    Virology; 1987 Jun; 158(2):414-26. PubMed ID: 2954301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping of the Q-utilization site (qut) required for antitermination of late transcription in bacteriophage lambda.
    Somasekhar G; Szybalski W
    Gene; 1983 Dec; 26(2-3):291-4. PubMed ID: 6231216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antitermination of E. coli rRNA transcription is caused by a control region segment containing lambda nut-like sequences.
    Li SC; Squires CL; Squires C
    Cell; 1984 Oct; 38(3):851-60. PubMed ID: 6091902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cluster of leftward, rho-dependent t'J terminators in the J gene of coliphage lambda.
    Luk KC; Szybalski W
    Gene; 1983 Mar; 21(3):175-91. PubMed ID: 6221968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacteriophage lambda N-dependent transcription antitermination. Competition for an RNA site may regulate antitermination.
    Patterson TA; Zhang Z; Baker T; Johnson LL; Friedman DI; Court DL
    J Mol Biol; 1994 Feb; 236(1):217-28. PubMed ID: 8107107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-mediated transcription antitermination in lambdoid phage H-19B is characterized by alternative NUT RNA structures and a reduced requirement for host factors.
    Neely MN; Friedman DI
    Mol Microbiol; 2000 Dec; 38(5):1074-85. PubMed ID: 11123680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.