These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 31564775)

  • 1. Magnetic field regulates plant functions, growth and enhances tolerance against environmental stresses.
    Radhakrishnan R
    Physiol Mol Biol Plants; 2019 Sep; 25(5):1107-1119. PubMed ID: 31564775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability.
    Phour M; Sindhu SS
    Planta; 2022 Sep; 256(5):85. PubMed ID: 36125564
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Radhakrishnan R; Hashem A; Abd Allah EF
    Front Physiol; 2017; 8():667. PubMed ID: 28932199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial Exopolysaccharides: Insight into Their Role in Plant Abiotic Stress Tolerance.
    Bhagat N; Raghav M; Dubey S; Bedi N
    J Microbiol Biotechnol; 2021 Aug; 31(8):1045-1059. PubMed ID: 34226402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How Does Proline Treatment Promote Salt Stress Tolerance During Crop Plant Development?
    El Moukhtari A; Cabassa-Hourton C; Farissi M; Savouré A
    Front Plant Sci; 2020; 11():1127. PubMed ID: 32793273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant Metabolomics: An Overview of the Role of Primary and Secondary Metabolites against Different Environmental Stress Factors.
    Salam U; Ullah S; Tang ZH; Elateeq AA; Khan Y; Khan J; Khan A; Ali S
    Life (Basel); 2023 Mar; 13(3):. PubMed ID: 36983860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential Mechanisms of Abiotic Stress Tolerance in Crop Plants Induced by Thiourea.
    Waqas MA; Kaya C; Riaz A; Farooq M; Nawaz I; Wilkes A; Li Y
    Front Plant Sci; 2019; 10():1336. PubMed ID: 31736993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Versatile roles of polyamines in improving abiotic stress tolerance of plants.
    Shao J; Huang K; Batool M; Idrees F; Afzal R; Haroon M; Noushahi HA; Wu W; Hu Q; Lu X; Huang G; Aamer M; Hassan MU; El Sabagh A
    Front Plant Sci; 2022; 13():1003155. PubMed ID: 36311109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects.
    Etesami H; Maheshwari DK
    Ecotoxicol Environ Saf; 2018 Jul; 156():225-246. PubMed ID: 29554608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum).
    Zhu M; Chen G; Zhang J; Zhang Y; Xie Q; Zhao Z; Pan Y; Hu Z
    Plant Cell Rep; 2014 Nov; 33(11):1851-63. PubMed ID: 25063324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic Field (MF) Applications in Plants: An Overview.
    Sarraf M; Kataria S; Taimourya H; Santos LO; Menegatti RD; Jain M; Ihtisham M; Liu S
    Plants (Basel); 2020 Sep; 9(9):. PubMed ID: 32899332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Arbuscular Mycorrhizal Fungi in Regulating Growth, Enhancing Productivity, and Potentially Influencing Ecosystems under Abiotic and Biotic Stresses.
    Wahab A; Muhammad M; Munir A; Abdi G; Zaman W; Ayaz A; Khizar C; Reddy SPP
    Plants (Basel); 2023 Aug; 12(17):. PubMed ID: 37687353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of arbuscular mycorrhizal fungi as an underground saviuor for protecting plants from abiotic stresses.
    Jajoo A; Mathur S
    Physiol Mol Biol Plants; 2021 Nov; 27(11):2589-2603. PubMed ID: 34924713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 5-aminolevulinic acid-mediated plant adaptive responses to abiotic stress.
    Rhaman MS; Imran S; Karim MM; Chakrobortty J; Mahamud MA; Sarker P; Tahjib-Ul-Arif M; Robin AHK; Ye W; Murata Y; Hasanuzzaman M
    Plant Cell Rep; 2021 Aug; 40(8):1451-1469. PubMed ID: 33839877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Halobacteria-Based Biofertilizers: A Promising Alternative for Enhancing Soil Fertility and Crop Productivity under Biotic and Abiotic Stresses-A Review.
    Masmoudi F; Alsafran M; Jabri HA; Hosseini H; Trigui M; Sayadi S; Tounsi S; Saadaoui I
    Microorganisms; 2023 May; 11(5):. PubMed ID: 37317222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate change driven plant-metal-microbe interactions.
    Rajkumar M; Prasad MN; Swaminathan S; Freitas H
    Environ Int; 2013 Mar; 53():74-86. PubMed ID: 23347948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticles: The Plant Saviour under Abiotic Stresses.
    Khalid MF; Iqbal Khan R; Jawaid MZ; Shafqat W; Hussain S; Ahmed T; Rizwan M; Ercisli S; Pop OL; Alina Marc R
    Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The critical role of biochar to mitigate the adverse impacts of drought and salinity stress in plants.
    Wu Y; Wang X; Zhang L; Zheng Y; Liu X; Zhang Y
    Front Plant Sci; 2023; 14():1163451. PubMed ID: 37223815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant mineral transport systems and the potential for crop improvement.
    Yadav B; Jogawat A; Lal SK; Lakra N; Mehta S; Shabek N; Narayan OP
    Planta; 2021 Jan; 253(2):45. PubMed ID: 33483879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.