These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 31565044)

  • 1. Emerging Roles of Synapse Organizers in the Regulation of Critical Periods.
    Ribic A; Biederer T
    Neural Plast; 2019; 2019():1538137. PubMed ID: 31565044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progressive maturation of silent synapses governs the duration of a critical period.
    Huang X; Stodieck SK; Goetze B; Cui L; Wong MH; Wenzel C; Hosang L; Dong Y; Löwel S; Schlüter OM
    Proc Natl Acad Sci U S A; 2015 Jun; 112(24):E3131-40. PubMed ID: 26015564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depletion of microglia in developing cortical circuits reveals its critical role in glutamatergic synapse development, functional connectivity, and critical period plasticity.
    Ma X; Chen K; Cui Y; Huang G; Nehme A; Zhang L; Li H; Wei J; Liong K; Liu Q; Shi L; Wu J; Qiu S
    J Neurosci Res; 2020 Oct; 98(10):1968-1986. PubMed ID: 32594561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical periods in amblyopia.
    Hensch TK; Quinlan EM
    Vis Neurosci; 2018 Jan; 35():E014. PubMed ID: 29905116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synapse organizers as molecular codes for synaptic plasticity.
    Connor SA; Siddiqui TJ
    Trends Neurosci; 2023 Nov; 46(11):971-985. PubMed ID: 37652840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SYNGAP1 links the maturation rate of excitatory synapses to the duration of critical-period synaptic plasticity.
    Clement JP; Ozkan ED; Aceti M; Miller CA; Rumbaugh G
    J Neurosci; 2013 Jun; 33(25):10447-52. PubMed ID: 23785156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of LRRTMs in synapse development and plasticity.
    Roppongi RT; Karimi B; Siddiqui TJ
    Neurosci Res; 2017 Mar; 116():18-28. PubMed ID: 27810425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural Glycosylphosphatidylinositol-Anchored Proteins in Synaptic Specification.
    Um JW; Ko J
    Trends Cell Biol; 2017 Dec; 27(12):931-945. PubMed ID: 28743494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. p75 Neurotrophin Receptor Activation Regulates the Timing of the Maturation of Cortical Parvalbumin Interneuron Connectivity and Promotes Juvenile-like Plasticity in Adult Visual Cortex.
    Baho E; Chattopadhyaya B; Lavertu-Jolin M; Mazziotti R; Awad PN; Chehrazi P; Groleau M; Jahannault-Talignani C; Vaucher E; Ango F; Pizzorusso T; Baroncelli L; Di Cristo G
    J Neurosci; 2019 Jun; 39(23):4489-4510. PubMed ID: 30936240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LAR-RPTPs: synaptic adhesion molecules that shape synapse development.
    Um JW; Ko J
    Trends Cell Biol; 2013 Oct; 23(10):465-75. PubMed ID: 23916315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging Synaptic Molecules as Candidates in the Etiology of Neurological Disorders.
    Torres VI; Vallejo D; Inestrosa NC
    Neural Plast; 2017; 2017():8081758. PubMed ID: 28331639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cadherins and catenins in dendrite and synapse morphogenesis.
    Seong E; Yuan L; Arikkath J
    Cell Adh Migr; 2015; 9(3):202-13. PubMed ID: 25914083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-delimited signaling of MET receptor tyrosine kinase regulates cortical circuit development and critical period plasticity.
    Chen K; Ma X; Nehme A; Wei J; Cui Y; Cui Y; Yao D; Wu J; Anderson T; Ferguson D; Levitt P; Qiu S
    Mol Psychiatry; 2021 Aug; 26(8):3723-3736. PubMed ID: 31900430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alteration of synaptic protein composition during developmental synapse maturation.
    Kaizuka T; Takumi T
    Eur J Neurosci; 2024 Jun; 59(11):2894-2914. PubMed ID: 38571321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanisms that underlie structural and functional changes at the postsynaptic membrane during synaptic plasticity.
    Wheal HV; Chen Y; Mitchell J; Schachner M; Maerz W; Wieland H; Van Rossum D; Kirsch J
    Prog Neurobiol; 1998 Aug; 55(6):611-40. PubMed ID: 9670221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanisms underlying activity-dependent GABAergic synapse development and plasticity and its implications for neurodevelopmental disorders.
    Chattopadhyaya B
    Neural Plast; 2011; 2011():734231. PubMed ID: 21826279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Molecular basis of long-lasting synaptic modifications underlying learning and memory].
    Okuno H
    Brain Nerve; 2013 Oct; 65(10):1171-8. PubMed ID: 24101428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell adhesion, the backbone of the synapse: "vertebrate" and "invertebrate" perspectives.
    Giagtzoglou N; Ly CV; Bellen HJ
    Cold Spring Harb Perspect Biol; 2009 Oct; 1(4):a003079. PubMed ID: 20066100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of neural circuit formation by leucine-rich repeat proteins.
    de Wit J; Ghosh A
    Trends Neurosci; 2014 Oct; 37(10):539-50. PubMed ID: 25131359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of homeostatic plasticity in the excitatory synapse.
    Fernandes D; Carvalho AL
    J Neurochem; 2016 Dec; 139(6):973-996. PubMed ID: 27241695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.