These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31565302)

  • 1. A Comparative Numerical Study on Piezoelectric Energy Harvester for Self-Powered Pacemaker Application.
    Kumar A; Kiran R; Kumar S; Chauhan VS; Kumar R; Vaish R
    Glob Chall; 2018 Jan; 2(1):1700084. PubMed ID: 31565302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester.
    Hwang GT; Park H; Lee JH; Oh S; Park KI; Byun M; Park H; Ahn G; Jeong CK; No K; Kwon H; Lee SG; Joung B; Lee KJ
    Adv Mater; 2014 Jul; 26(28):4880-7. PubMed ID: 24740465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Development of a Lead-Freepiezoelectric Energy Harvester for Wideband, Low Frequency, and Low Amplitude Vibrations.
    Kumari N; Rakotondrabe M
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An experimental study on a piezoelectric vibration energy harvester for self-powered cardiac pacemakers.
    Xie F; Qian X; Li N; Cui D; Zhang H; Xu Z
    Ann Transl Med; 2021 May; 9(10):880. PubMed ID: 34164514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible Semitransparent Energy Harvester with High Pressure Sensitivity and Power Density Based on Laterally Aligned PZT Single-Crystal Nanowires.
    Zhao QL; He GP; Di JJ; Song WL; Hou ZL; Tan PP; Wang DW; Cao MS
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24696-24703. PubMed ID: 28715192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Powered Synchronized Switching Interface Circuit for Piezoelectric Footstep Energy Harvesting.
    Ben Ammar M; Sahnoun S; Fakhfakh A; Viehweger C; Kanoun O
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A spiral-shaped harvester with an improved harvesting element and an adaptive storage circuit.
    Hu H; Xue H; Hu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jun; 54(6):1177-87. PubMed ID: 17571816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power Density Improvement of Piezoelectric Energy Harvesters via a Novel Hybridization Scheme with Electromagnetic Transduction.
    Li Z; Xin C; Peng Y; Wang M; Luo J; Xie S; Pu H
    Micromachines (Basel); 2021 Jul; 12(7):. PubMed ID: 34357213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fish-Wearable Piezoelectric Nanogenerator for Dual-Modal Energy Scavenging from Fish-Tailing.
    Sheng T; He Q; Cao Y; Dong Z; Gai Y; Zhang W; Zhang D; Chen H; Jiang Y
    ACS Appl Mater Interfaces; 2023 Aug; 15(33):39570-39577. PubMed ID: 37561408
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Xie F; Qian X; Li N; Cui D; Zhang H; Xu Z
    Ann Transl Med; 2021 May; 9(9):800. PubMed ID: 34268413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibration Energy Conversion Power Supply Based on the Piezoelectric Thin Film Planar Array.
    Wang B; Lan D; Zeng F; Li W
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible Energy Harvester on a Pacemaker Lead Using Multibeam Piezoelectric Composite Thin Films.
    Xu Z; Jin C; Cabe A; Escobedo D; Hao N; Trase I; Closson AB; Dong L; Nie Y; Elliott J; Feldman MD; Chen Z; Zhang JXJ
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34170-34179. PubMed ID: 32543828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfabrication and integration of a sol-gel PZT folded spring energy harvester.
    Lueke J; Badr A; Lou E; Moussa WA
    Sensors (Basel); 2015 May; 15(6):12218-41. PubMed ID: 26016911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A sub-cc nonlinear piezoelectric energy harvester for powering leadless pacemakers.
    Ansari MH; Karami MA
    J Intell Mater Syst Struct; 2018 Feb; 29(3):438-445. PubMed ID: 29674842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance piezoelectric energy harvesting of vertically aligned Pb(Zr,Ti)O
    Jin W; Wang Z; Huang H; Hu X; He Y; Li M; Li L; Gao Y; Hu Y; Gu H
    RSC Adv; 2018 Feb; 8(14):7422-7427. PubMed ID: 35539103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Piezoelectric Performance of a Symmetrical Ring-Shaped Piezoelectric Energy Harvester Using PZT-5H under a Temperature Gradient.
    Zhou N; Li R; Ao H; Zhang C; Jiang H
    Micromachines (Basel); 2020 Jun; 11(7):. PubMed ID: 32610622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit.
    Yu H; Zhou J; Deng L; Wen Z
    Sensors (Basel); 2014 Feb; 14(2):3323-41. PubMed ID: 24556670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research and analysis of an energy harvester of piezoelectric cantilever beam based on nonlinear magnetic action.
    Gu X; He L; Yu G; Liu L; Zhou J; Cheng G
    Rev Sci Instrum; 2022 Jan; 93(1):015001. PubMed ID: 35104973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical Modeling of a Doubly Clamped Flexible Piezoelectric Energy Harvester with Axial Excitation and Its Experimental Characterization.
    Mei J; Fan Q; Li L; Chen D; Xu L; Dai Q; Liu Q
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34205008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Hybrid Piezoelectric and Electromagnetic Broadband Harvester with Double Cantilever Beams.
    Jiang B; Zhu F; Yang Y; Zhu J; Yang Y; Yuan M
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.