These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31565512)

  • 1. Development of a stand-alone DCS system for monitoring absolute cerebral blood flow.
    Khalid M; Milej D; Rajaram A; Abdalmalak A; Morrison L; Diop M; St Lawrence K
    Biomed Opt Express; 2019 Sep; 10(9):4607-4620. PubMed ID: 31565512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noninvasive continuous optical monitoring of absolute cerebral blood flow in critically ill adults.
    He L; Baker WB; Milej D; Kavuri VC; Mesquita RC; Busch DR; Abramson K; Jiang JY; Diop M; St Lawrence K; Amendolia O; Quattrone F; Balu R; Kofke WA; Yodh AG
    Neurophotonics; 2018 Oct; 5(4):045006. PubMed ID: 30480039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements.
    Diop M; Verdecchia K; Lee TY; St Lawrence K
    Biomed Opt Express; 2011 Jul; 2(7):2068-81. PubMed ID: 21750781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of Brain Hypoxia Based on Noninvasive Optical Monitoring of Cerebral Blood Flow with Diffuse Correlation Spectroscopy.
    Busch DR; Balu R; Baker WB; Guo W; He L; Diop M; Milej D; Kavuri V; Amendolia O; St Lawrence K; Yodh AG; Kofke WA
    Neurocrit Care; 2019 Feb; 30(1):72-80. PubMed ID: 30030667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying cerebral blood flow in an adult pig ischemia model by a depth-resolved dynamic contrast-enhanced optical method.
    Elliott JT; Diop M; Morrison LB; d'Esterre CD; Lee TY; St Lawrence K
    Neuroimage; 2014 Jul; 94():303-311. PubMed ID: 24650601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults.
    Kim MN; Durduran T; Frangos S; Edlow BL; Buckley EM; Moss HE; Zhou C; Yu G; Choe R; Maloney-Wilensky E; Wolf RL; Grady MS; Greenberg JH; Levine JM; Yodh AG; Detre JA; Kofke WA
    Neurocrit Care; 2010 Apr; 12(2):173-80. PubMed ID: 19908166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prolonged monitoring of cerebral blood flow and autoregulation with diffuse correlation spectroscopy in neurocritical care patients.
    Selb J; Wu KC; Sutin J; Lin PI; Farzam P; Bechek S; Shenoy A; Patel AB; Boas DA; Franceschini MA; Rosenthal ES
    Neurophotonics; 2018 Oct; 5(4):045005. PubMed ID: 30450363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct assessment of extracerebral signal contamination on optical measurements of cerebral blood flow, oxygenation, and metabolism.
    Milej D; Abdalmalak A; Rajaram A; St Lawrence K
    Neurophotonics; 2020 Oct; 7(4):045002. PubMed ID: 33062801
    [No Abstract]   [Full Text] [Related]  

  • 9. Validation of a stand-alone near-infrared spectroscopy system for monitoring cerebral autoregulation during cardiac surgery.
    Ono M; Zheng Y; Joshi B; Sigl JC; Hogue CW
    Anesth Analg; 2013 Jan; 116(1):198-204. PubMed ID: 23223100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of time-resolved and continuous-wave near-infrared techniques for measuring cerebral blood flow in piglets.
    Diop M; Tichauer KM; Elliott JT; Migueis M; Lee TY; St Lawrence K
    J Biomed Opt; 2010; 15(5):057004. PubMed ID: 21054120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of novel diffuse optical spectroscopies for improved neuromonitoring during neonatal cardiac surgery requiring antegrade cerebral perfusion.
    Shaw K; Mavroudis CD; Ko TS; Jahnavi J; Jacobwitz M; Ranieri N; Forti RM; Melchior RW; Baker WB; Yodh AG; Licht DJ; Nicolson SC; Lynch JM
    Front Pediatr; 2023; 11():1125985. PubMed ID: 37425272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing the performance potential of speckle contrast optical spectroscopy and diffuse correlation spectroscopy for cerebral blood flow monitoring using Monte Carlo simulations in realistic head geometries.
    Robinson MB; Cheng TY; Renna M; Wu MM; Kim B; Cheng X; Boas DA; Franceschini MA; Carp SA
    Neurophotonics; 2024 Jan; 11(1):015004. PubMed ID: 38282721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of diffuse correlation spectroscopy and frequency-domain near-infrared spectroscopy in monitoring cerebral hemodynamics during hypothermic circulatory arrests.
    Zavriyev AI; Kaya K; Farzam P; Farzam PY; Sunwoo J; Jassar AS; Sundt TM; Carp SA; Franceschini MA; Qu JZ
    JTCVS Tech; 2021 Jun; 7():161-177. PubMed ID: 34318236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic cerebral autoregulation measured by diffuse correlation spectroscopy.
    Favilla CG; Mullen MT; Kahn F; Rasheed ID; Messe SR; Parthasarathy AB; Yodh AG
    J Cereb Blood Flow Metab; 2023 Aug; 43(8):1317-1327. PubMed ID: 36703572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of diffuse correlation spectroscopy measurements of rodent cerebral blood flow with simultaneous arterial spin labeling MRI; towards MRI-optical continuous cerebral metabolic monitoring.
    Carp SA; Dai GP; Boas DA; Franceschini MA; Kim YR
    Biomed Opt Express; 2010 Aug; 1(2):553-565. PubMed ID: 21258489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous non-invasive optical monitoring of cerebral blood flow and oxidative metabolism after acute brain injury.
    Baker WB; Balu R; He L; Kavuri VC; Busch DR; Amendolia O; Quattrone F; Frangos S; Maloney-Wilensky E; Abramson K; Mahanna Gabrielli E; Yodh AG; Andrew Kofke W
    J Cereb Blood Flow Metab; 2019 Aug; 39(8):1469-1485. PubMed ID: 31088234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Quantitative Associations Between Near Infrared Spectroscopic Cerebrovascular Metrics and Cerebral Blood Flow: A Scoping Review of the Human and Animal Literature.
    Gomez A; Sainbhi AS; Froese L; Batson C; Slack T; Stein KY; Cordingley DM; Mathieu F; Zeiler FA
    Front Physiol; 2022; 13():934731. PubMed ID: 35910568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the relationship between the cerebral metabolic rate of oxygen and the oxidation state of cytochrome-c-oxidase.
    Milej D; Rajaram A; Suwalski M; Morrison LB; Shoemaker LN; St Lawrence K
    Neurophotonics; 2022 Jul; 9(3):035001. PubMed ID: 35874144
    [No Abstract]   [Full Text] [Related]  

  • 19. A Wearable Fiber-Free Optical Sensor for Continuous Monitoring of Neonatal Cerebral Blood Flow and Oxygenation.
    Liu X; Mohtasebi M; Safavi P; Fathi F; Haratbar SR; Chen L; Chen J; Bada HS; Chen L; Abu Jawdeh EG; Yu G
    medRxiv; 2023 Sep; ():. PubMed ID: 37790418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wearable fiber-free optical sensor for continuous monitoring of neonatal cerebral blood flow and oxygenation.
    Liu X; Mohtasebi M; Safavi P; Fathi F; Haratbar SR; Chen L; Chen J; Bada HS; Chen L; Abu Jawdeh EG; Yu G
    Pediatr Res; 2024 Mar; ():. PubMed ID: 38503982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.