These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31565918)

  • 1. Manipulating "Hot Spots" from Nanometer to Angstrom: Toward Understanding Integrated Contributions of Molecule Number and Gap Size for Ultrasensitive Surface-Enhanced Raman Scattering Detection.
    Lu H; Zhu L; Lu Y; Su J; Zhang R; Cui Y
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):39359-39368. PubMed ID: 31565918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analyte Co-localization at Electromagnetic Gap Hot-Spots for Highly Sensitive (Bio)molecular Detection by Plasmon Enhanced Spectroscopies.
    Rastogi R; Arianfard H; Moss D; Juodkazis S; Adam PM; Krishnamoorthy S
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):9113-9121. PubMed ID: 33583180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shedding Light on Surface-Enhanced Raman Scattering Hot Spots through Single-Molecule Super-Resolution Imaging.
    Willets KA; Stranahan SM; Weber ML
    J Phys Chem Lett; 2012 May; 3(10):1286-94. PubMed ID: 26286772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile in Situ Synthesis of Silver Nanoparticles on the Surface of Metal-Organic Framework for Ultrasensitive Surface-Enhanced Raman Scattering Detection of Dopamine.
    Jiang Z; Gao P; Yang L; Huang C; Li Y
    Anal Chem; 2015 Dec; 87(24):12177-82. PubMed ID: 26575213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially Controlled Fabrication of Surface-Enhanced Raman Scattering Hot Spots through Photoinduced Dewetting of Silver Thin Films.
    Choi HK; Park SM; Jeong J; Lee H; Yeon GJ; Kim DS; Kim ZH
    J Phys Chem Lett; 2022 Apr; 13(13):2969-2975. PubMed ID: 35343701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volume-Enhanced Raman Scattering Detection of Viruses.
    Zhang X; Zhang X; Luo C; Liu Z; Chen Y; Dong S; Jiang C; Yang S; Wang F; Xiao X
    Small; 2019 Mar; 15(11):e1805516. PubMed ID: 30706645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A scheme for detecting every single target molecule with surface-enhanced Raman spectroscopy.
    Le Ru EC; Grand J; Sow I; Somerville WR; Etchegoin PG; Treguer-Delapierre M; Charron G; Félidj N; Lévi G; Aubard J
    Nano Lett; 2011 Nov; 11(11):5013-9. PubMed ID: 21985399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pattern Recognition Directed Assembly of Plasmonic Gap Nanostructures for Single-Molecule SERS.
    Niu R; Gao F; Wang D; Zhu D; Su S; Chen S; YuWen L; Fan C; Wang L; Chao J
    ACS Nano; 2022 Sep; 16(9):14622-14631. PubMed ID: 36083609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Super-resolution optical imaging of single-molecule SERS hot spots.
    Stranahan SM; Willets KA
    Nano Lett; 2010 Sep; 10(9):3777-84. PubMed ID: 20718441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smart SERS Hot Spots: Single Molecules Can Be Positioned in a Plasmonic Nanojunction Using Host-Guest Chemistry.
    Kim NH; Hwang W; Baek K; Rohman MR; Kim J; Kim HW; Mun J; Lee SY; Yun G; Murray J; Ha JW; Rho J; Moskovits M; Kim K
    J Am Chem Soc; 2018 Apr; 140(13):4705-4711. PubMed ID: 29485275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ag@SiO2 core-shell nanoparticles on silicon nanowire arrays as ultrasensitive and ultrastable substrates for surface-enhanced Raman scattering.
    Zhang CX; Su L; Chan YF; Wu ZL; Zhao YM; Xu HJ; Sun XM
    Nanotechnology; 2013 Aug; 24(33):335501. PubMed ID: 23881155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Surface-Enhanced Raman Scattering Sensor Integrated with Battery-Controlled Fluidic Device for Capture and Detection of Trace Small Molecules.
    Zhou Q; Meng G; Zheng P; Cushing S; Wu N; Huang Q; Zhu C; Zhang Z; Wang Z
    Sci Rep; 2015 Aug; 5():12865. PubMed ID: 26238799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density "hot spots" for surface-enhanced Raman scattering.
    Chen M; Phang IY; Lee MR; Yang JK; Ling XY
    Langmuir; 2013 Jun; 29(23):7061-9. PubMed ID: 23706081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering.
    Li C; Liu A; Zhang C; Wang M; Li Z; Xu S; Jiang S; Yu J; Yang C; Man B
    Opt Express; 2017 Aug; 25(17):20631-20641. PubMed ID: 29041742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolating surface-enhanced Raman scattering hot spots using multiphoton lithography.
    Diebold ED; Peng P; Mazur E
    J Am Chem Soc; 2009 Nov; 131(45):16356-7. PubMed ID: 19860421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The moveable "hot spots" effect in an Au nanoparticles-Au plate coupled system.
    Sun Y; Zhang C; Yuan Y; Xu M; Yao J
    Nanoscale; 2020 Dec; 12(46):23789-23798. PubMed ID: 33237087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New tools for investigating electromagnetic hot spots in single-molecule surface-enhanced Raman scattering.
    Willets KA
    Chemphyschem; 2013 Oct; 14(14):3186-95. PubMed ID: 23780669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoarchitecture Based SERS for Biomolecular Fingerprinting and Label-Free Disease Markers Diagnosis.
    Sinha SS; Jones S; Pramanik A; Ray PC
    Acc Chem Res; 2016 Dec; 49(12):2725-2735. PubMed ID: 27993003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells.
    Radziuk D; Moehwald H
    Phys Chem Chem Phys; 2015 Sep; 17(33):21072-93. PubMed ID: 25619814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.