These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 31565947)
1. Mechanochemical Degrafting of a Surface-Tethered Poly(acrylic acid) Brush Promoted Etching of Its Underlying Silicon Substrate. Li Y; Lin Y; Dai Y; Ko Y; Genzer J Langmuir; 2019 Oct; 35(42):13693-13699. PubMed ID: 31565947 [TBL] [Abstract][Full Text] [Related]
2. Visualization of Mechanochemically-Assisted Degrafting of Surface-Tethered Poly(Acrylic Acid) Brushes. Li Y; Lin Y; Ko Y; Kiserow D; Genzer J ACS Macro Lett; 2018 Jun; 7(6):609-613. PubMed ID: 35632964 [TBL] [Abstract][Full Text] [Related]
3. Swelling-Induced Chain Stretching Enhances Hydrolytic Degrafting of Hydrophobic Polymer Brushes in Organic Media. Wang J; Klok HA Angew Chem Int Ed Engl; 2019 Jul; 58(29):9989-9993. PubMed ID: 31116495 [TBL] [Abstract][Full Text] [Related]
4. Swelling and Degrafting of Poly(3-sulfopropyl methacrylate) Brushes. Sant S; Kaur K; Klok HA Langmuir; 2024 Oct; 40(41):21656-21662. PubMed ID: 39348193 [TBL] [Abstract][Full Text] [Related]
5. On-demand degrafting and the study of molecular weight and grafting density of poly(methyl methacrylate) brushes on flat silica substrates. Patil RR; Turgman-Cohen S; Šrogl J; Kiserow D; Genzer J Langmuir; 2015 Mar; 31(8):2372-81. PubMed ID: 25654273 [TBL] [Abstract][Full Text] [Related]
6. Biofunctionalization of Titanium Substrates Using Nanoscale Polymer Brushes with Cell Adhesion Peptides. Rosenthal A; Mantz A; Nguyen A; Bittrich E; Schubert E; Schubert M; Stamm M; Pannier AK; Uhlmann P J Phys Chem B; 2018 Jun; 122(25):6543-6550. PubMed ID: 29878775 [TBL] [Abstract][Full Text] [Related]
7. Growth Factor-Bearing Polymer Brushes--Versatile Bioactive Substrates Influencing Cell Response. Psarra E; Foster E; König U; You J; Ueda Y; Eichhorn KJ; Müller M; Stamm M; Revzin A; Uhlmann P Biomacromolecules; 2015 Nov; 16(11):3530-42. PubMed ID: 26447354 [TBL] [Abstract][Full Text] [Related]
8. Introducing surface-tethered poly(acrylic acid) brushes as 3D functional thin film for biosensing applications. Akkahat P; Hoven VP Colloids Surf B Biointerfaces; 2011 Aug; 86(1):198-205. PubMed ID: 21530190 [TBL] [Abstract][Full Text] [Related]
9. Entropy-Enhanced Mechanochemical Activation for Thermal Degrafting of Surface-Tethered Dry Polystyrene Brushes. Wang F; Liu W; Lu R; Huang JH; Zuo B; Wang X ACS Macro Lett; 2022 Aug; 11(8):1041-1048. PubMed ID: 35920565 [TBL] [Abstract][Full Text] [Related]
10. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification. J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480 [TBL] [Abstract][Full Text] [Related]
11. In Situ Characterization of Binary Mixed Polymer Brush-Grafted Silica Nanoparticles in Aqueous and Organic Solvents by Cryo-Electron Tomography. Fox TL; Tang S; Horton JM; Holdaway HA; Zhao B; Zhu L; Stewart PL Langmuir; 2015 Aug; 31(31):8680-8. PubMed ID: 26174179 [TBL] [Abstract][Full Text] [Related]
12. In situ studies on the switching behavior of ultrathin poly(acrylic acid) polyelectrolyte brushes in different aqueous environments. Aulich D; Hoy O; Luzinov I; Brücher M; Hergenröder R; Bittrich E; Eichhorn KJ; Uhlmann P; Stamm M; Esser N; Hinrichs K Langmuir; 2010 Aug; 26(15):12926-32. PubMed ID: 20602533 [TBL] [Abstract][Full Text] [Related]
13. Free Polyethylenimine Enhances Substrate-Mediated Gene Delivery on Titanium Substrates Modified With RGD-Functionalized Poly(acrylic acid) Brushes. Mantz A; Rosenthal A; Farris E; Kozisek T; Bittrich E; Nazari S; Schubert E; Schubert M; Stamm M; Uhlmann P; Pannier AK Front Chem; 2019; 7():51. PubMed ID: 30792979 [TBL] [Abstract][Full Text] [Related]
14. Surface-grafted poly(acrylic acid) brushes as a precursor layer for biosensing applications: effect of graft density and swellability on the detection efficiency. Akkahat P; Mekboonsonglarp W; Kiatkamjornwong S; Hoven VP Langmuir; 2012 Mar; 28(11):5302-11. PubMed ID: 22329634 [TBL] [Abstract][Full Text] [Related]
15. [Application of mixed polymer brushes based on poly(2-methyl-2-oxazoline) and poly(acrylic acid) to on-line preconcentration of lysozyme by capillary electrophoresis]. Zhang M; Wang Y; Muhammad A; Chen L; Wang Y Se Pu; 2020 Sep; 38(9):1085-1094. PubMed ID: 34213275 [TBL] [Abstract][Full Text] [Related]
16. pH- and Electro-Responsive Properties of Poly(acrylic acid) and Poly(acrylic acid)-block-poly(acrylic acid-grad-styrene) Brushes Studied by Quartz Crystal Microbalance with Dissipation Monitoring. Borisova OV; Billon L; Richter RP; Reimhult E; Borisov OV Langmuir; 2015 Jul; 31(27):7684-94. PubMed ID: 26070329 [TBL] [Abstract][Full Text] [Related]
17. Brush/gold nanoparticle hybrids: effect of grafting density on the particle uptake and distribution within weak polyelectrolyte brushes. Christau S; Möller T; Yenice Z; Genzer J; von Klitzing R Langmuir; 2014 Nov; 30(43):13033-41. PubMed ID: 25275215 [TBL] [Abstract][Full Text] [Related]
18. Nanostructured Biointerfaces: Nanoarchitectonics of Thermoresponsive Polymer Brushes Impact Protein Adsorption and Cell Adhesion. Psarra E; König U; Ueda Y; Bellmann C; Janke A; Bittrich E; Eichhorn KJ; Uhlmann P ACS Appl Mater Interfaces; 2015 Jun; 7(23):12516-29. PubMed ID: 25651080 [TBL] [Abstract][Full Text] [Related]
19. Wetting transition on hydrophobic surfaces covered by polyelectrolyte brushes. Muller P; Sudre G; Théodoly O Langmuir; 2008 Sep; 24(17):9541-50. PubMed ID: 18652425 [TBL] [Abstract][Full Text] [Related]
20. Dependence of deposition method on the molecular structure and stability of organosilanes revealed from degrafting by tetrabutylammonium fluoride. Miles J; Ko Y; Genzer J Phys Chem Chem Phys; 2020 Jan; 22(2):658-666. PubMed ID: 31829362 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]