These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31565947)

  • 21. Hysteretic memory in pH-response of water contact angle on poly(acrylic acid) brushes.
    Yadav V; Harkin AV; Robertson ML; Conrad JC
    Soft Matter; 2016 Apr; 12(15):3589-99. PubMed ID: 26979270
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stimuli-responsive polyelectrolyte block copolymer brushes synthesized from the Si wafer via atom-transfer radical polymerization.
    Yu K; Wang H; Xue L; Han Y
    Langmuir; 2007 Jan; 23(3):1443-52. PubMed ID: 17241071
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quartz crystal microbalance study of ionic strength and pH-dependent polymer conformation and protein adsorption/desorption on PAA, PEO, and mixed PEO/PAA brushes.
    Delcroix MF; Demoustier-Champagne S; Dupont-Gillain CC
    Langmuir; 2014 Jan; 30(1):268-77. PubMed ID: 24328402
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aqueous fabrication of pH-gated, polymer-brush-modified alumina hybrid membranes.
    Sugnaux C; Lavanant L; Klok HA
    Langmuir; 2013 Jun; 29(24):7325-33. PubMed ID: 23391159
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Friction and normal interaction forces between irreversibly attached weakly charged polymer brushes.
    Liberelle B; Giasson S
    Langmuir; 2008 Feb; 24(4):1550-9. PubMed ID: 18225926
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enzyme Immobilization in Polyelectrolyte Brushes: High Loading and Enhanced Activity Compared to Monolayers.
    Ferrand-Drake Del Castillo G; Koenig M; Müller M; Eichhorn KJ; Stamm M; Uhlmann P; Dahlin A
    Langmuir; 2019 Mar; 35(9):3479-3489. PubMed ID: 30742441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct Measurement of Molecular Weight and Grafting Density by Controlled and Quantitative Degrafting of Surface-Anchored Poly(methyl methacrylate).
    Patil RR; Turgman-Cohen S; Šrogl J; Kiserow D; Genzer J
    ACS Macro Lett; 2015 Feb; 4(2):251-254. PubMed ID: 35596417
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The physico-chemistry of adhesions of protein resistant and weak polyelectrolyte brushes to cells and tissues.
    Cozens EJ; Kong D; Roohpour N; Gautrot JE
    Soft Matter; 2020 Jan; 16(2):505-522. PubMed ID: 31804646
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanostructure of a poly(acrylic acid) brush and its transition in the amphiphilic diblock copolymer monolayer on the water surface.
    Matsuoka H; Suetomi Y; Kaewsaiha P; Matsumoto K
    Langmuir; 2009 Dec; 25(24):13752-62. PubMed ID: 19583229
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polymer brushes grafted to "passivated" silicon substrates using click chemistry.
    Ostaci RV; Damiron D; Capponi S; Vignaud G; Léger L; Grohens Y; Drockenmuller E
    Langmuir; 2008 Mar; 24(6):2732-9. PubMed ID: 18247640
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization.
    Majoinen J; Walther A; McKee JR; Kontturi E; Aseyev V; Malho JM; Ruokolainen J; Ikkala O
    Biomacromolecules; 2011 Aug; 12(8):2997-3006. PubMed ID: 21740051
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dopamine assisted PMOXA/PAA brushes for their switchable protein adsorption/desorption.
    Pan C; Liu X; Gong K; Mumtaz F; Wang Y
    J Mater Chem B; 2018 Jan; 6(4):556-567. PubMed ID: 32254484
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of Spherical Polyelectrolyte Brushes by Thermo-controlled Emulsion Polymerization.
    Wang X; Xu J; Li L; Wu S; Chen Q; Lu Y; Ballauff M; Guo X
    Macromol Rapid Commun; 2010 Jul; 31(14):1272-5. PubMed ID: 21567523
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tuning Bacterial Attachment and Detachment via the Thickness and Dispersity of a pH-Responsive Polymer Brush.
    Yadav V; Jaimes-Lizcano YA; Dewangan NK; Park N; Li TH; Robertson ML; Conrad JC
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44900-44910. PubMed ID: 29215264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanomechanics of pH-Responsive, Drug-Loaded, Bilayered Polymer Grafts.
    Nalam PC; Lee HS; Bhatt N; Carpick RW; Eckmann DM; Composto RJ
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):12936-12948. PubMed ID: 28221026
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functionalization and Patterning of Self-Assembled Monolayers and Polymer Brushes Using Microcontact Chemistry.
    Lamping S; Buten C; Ravoo BJ
    Acc Chem Res; 2019 May; 52(5):1336-1346. PubMed ID: 30969751
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction forces between microsized silica particles and weak polyelectrolyte brushes at varying pH and salt concentration.
    Drechsler A; Synytska A; Uhlmann P; Elmahdy MM; Stamm M; Kremer F
    Langmuir; 2010 May; 26(9):6400-10. PubMed ID: 20038115
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanowear studies in reversibly switchable polystyrene-poly(acrylic acid) mixed brushes.
    Vyas MK; Nandan B; Schneider K; Stamm M
    J Colloid Interface Sci; 2008 Dec; 328(1):58-66. PubMed ID: 18834596
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Grafting Density-Dependent Phase Transition Mechanism of Thermoresponsive Poly(glycidyl ether) Brushes: A Comprehensive QCM-D Study.
    Schweigerdt A; Heinen S; Stöbener DD; Weinhart M
    Langmuir; 2021 Jun; 37(23):7087-7096. PubMed ID: 34077209
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissociation behavior of weak polyelectrolyte brushes on a planar surface.
    Dong R; Lindau M; Ober CK
    Langmuir; 2009 Apr; 25(8):4774-9. PubMed ID: 19243153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.