BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 31566246)

  • 1. Expert recommendations on the assessment of wall shear stress in human coronary arteries: existing methodologies, technical considerations, and clinical applications.
    Gijsen F; Katagiri Y; Barlis P; Bourantas C; Collet C; Coskun U; Daemen J; Dijkstra J; Edelman E; Evans P; van der Heiden K; Hose R; Koo BK; Krams R; Marsden A; Migliavacca F; Onuma Y; Ooi A; Poon E; Samady H; Stone P; Takahashi K; Tang D; Thondapu V; Tenekecioglu E; Timmins L; Torii R; Wentzel J; Serruys P
    Eur Heart J; 2019 Nov; 40(41):3421-3433. PubMed ID: 31566246
    [No Abstract]   [Full Text] [Related]  

  • 2. Wall shear stress: theoretical considerations and methods of measurement.
    Katritsis D; Kaiktsis L; Chaniotis A; Pantos J; Efstathopoulos EP; Marmarelis V
    Prog Cardiovasc Dis; 2007; 49(5):307-29. PubMed ID: 17329179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of superficial coronary vessel wall deformation and stress: validation of in silico models and human coronary arteries in vivo.
    Wu X; von Birgelen C; Li Z; Zhang S; Huang J; Liang F; Li Y; Wijns W; Tu S
    Int J Cardiovasc Imaging; 2018 Jun; 34(6):849-861. PubMed ID: 29397475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetohydrodynamic blood flow in patients with coronary artery disease.
    Javadzadegan A; Moshfegh A; Afrouzi HH; Omidi M
    Comput Methods Programs Biomed; 2018 Sep; 163():111-122. PubMed ID: 30119846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Haemodynamic assessment of human coronary arteries is affected by degree of freedom of artery movement.
    Javadzadegan A; Yong AS; Chang M; Ng MK; Behnia M; Kritharides L
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(3):260-272. PubMed ID: 27467730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computed numerical analysis of the biomechanical effects on coronary atherogenesis using human hemodynamic and dimensional variables.
    Lee BK; Kwon HM; Kim D; Yoon YW; Seo JK; Kim IJ; Roh HW; Suh SH; Yoo SS; Kim HS
    Yonsei Med J; 1998 Apr; 39(2):166-74. PubMed ID: 9587258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of angiographic and IVUS derived coronary geometric reconstructions for evaluation of the association of hemodynamics with coronary artery disease progression.
    Timmins LH; Suo J; Eshtehardi P; Molony DS; McDaniel MC; Oshinski JN; Giddens DP; Samady H
    Int J Cardiovasc Imaging; 2016 Sep; 32(9):1327-1336. PubMed ID: 27229349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plaque composition and its relationship with acknowledged shear stress patterns in coronary arteries.
    Rodriguez-Granillo GA; García-García HM; Wentzel J; Valgimigli M; Tsuchida K; van der Giessen W; de Jaegere P; Regar E; de Feyter PJ; Serruys PW
    J Am Coll Cardiol; 2006 Feb; 47(4):884-5. PubMed ID: 16487861
    [No Abstract]   [Full Text] [Related]  

  • 9. Novel non-dimensional approach to comparison of wall shear stress distributions in coronary arteries of different groups of patients.
    Wellnhofer E; Goubergrits L; Kertzscher U; Affeld K; Fleck E
    Atherosclerosis; 2009 Feb; 202(2):483-90. PubMed ID: 18617176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relation between plaque type, plaque thickness, blood shear stress, and plaque stress in coronary arteries assessed by X-ray angiography and intravascular ultrasound.
    Balocco S; Gatta C; Alberti M; Carrillo X; Rigla J; Radeva P
    Med Phys; 2012 Dec; 39(12):7430-45. PubMed ID: 23231293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment with clinical data of a coupled bio-hemodynamics numerical model to predict leukocyte adhesion in coronary arteries.
    Ciri U; Bennett RL; Bhui R; Molony DS; Samady H; Meyer CA; Hayenga HN; Leonardi S
    Sci Rep; 2021 Jun; 11(1):12680. PubMed ID: 34135399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemodynamic characterization of transient blood flow in right coronary arteries with varying curvature and side-branch bifurcation angles.
    Liu G; Wu J; Ghista DN; Huang W; Wong KK
    Comput Biol Med; 2015 Sep; 64():117-26. PubMed ID: 26164032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical factors in coronary vulnerable plaque risk of rupture: intravascular ultrasound-based patient-specific fluid-structure interaction studies.
    Liang X; Xenos M; Alemu Y; Rambhia SH; Lavi I; Kornowski R; Gruberg L; Fuchs S; Einav S; Bluestein D
    Coron Artery Dis; 2013 Mar; 24(2):75-87. PubMed ID: 23363983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights on atherosclerosis by non-invasive assessment of wall stress and arterial morphology along the length of human coronary plaques.
    Katranas SA; Antoniadis AP; Kelekis AL; Giannoglou GD
    Int J Cardiovasc Imaging; 2015 Dec; 31(8):1627-33. PubMed ID: 26255177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects.
    Milner JS; Moore JA; Rutt BK; Steinman DA
    J Vasc Surg; 1998 Jul; 28(1):143-56. PubMed ID: 9685141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effect of Strut Protrusion on Shear Stress Distribution: Hemodynamic Insights From a Prospective Clinical Trial.
    Tenekecioglu E; Torii R; Sotomi Y; Collet C; Dijkstra J; Miyazaki Y; Crake T; Su S; Costa R; Chámie D; Liew HB; Santoso T; Onuma Y; Abizaid A; Bourantas CV; Serruys PW
    JACC Cardiovasc Interv; 2017 Sep; 10(17):1803-1805. PubMed ID: 28882287
    [No Abstract]   [Full Text] [Related]  

  • 17. Stent Expansion and Endothelial Shear Stress in Bifurcation Lesions.
    Okamoto N; Vengrenyuk Y; Bhatheja S; Chamaria S; Khan A; Gupta E; Kapur V; Barman N; Hasan C; Sweeny J; Baber U; Mehran R; Narula J; Sharma SK; Kini AS
    Circ Cardiovasc Interv; 2019 Jun; 12(6):e007911. PubMed ID: 31195824
    [No Abstract]   [Full Text] [Related]  

  • 18. Erosion of Thin-Cap Fibroatheroma in an Area of Low Endothelial Shear Stress: Anatomy and Local Hemodynamic Environment Dictate Outcomes.
    Giannopoulos AA; Antoniadis AP; Croce K; Chatzizisis YS
    JACC Cardiovasc Interv; 2016 Apr; 9(8):e77-e78. PubMed ID: 27017369
    [No Abstract]   [Full Text] [Related]  

  • 19. Wall shear stress estimates in coronary artery constrictions.
    Back LH; Crawford DW
    J Biomech Eng; 1992 Nov; 114(4):515-20. PubMed ID: 1487905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Choosing the optimal wall shear parameter for the prediction of plaque location-A patient-specific computational study in human left coronary arteries.
    Rikhtegar F; Knight JA; Olgac U; Saur SC; Poulikakos D; Marshall W; Cattin PC; Alkadhi H; Kurtcuoglu V
    Atherosclerosis; 2012 Apr; 221(2):432-7. PubMed ID: 22317967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.