These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 31566254)

  • 1. Relative contributions of implant hydrophilicity and nanotopography to implant anchorage in bone at Early Time Points.
    Liddell RS; Liu ZM; Mendes VC; Davies JE
    Clin Oral Implants Res; 2020 Jan; 31(1):49-63. PubMed ID: 31566254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of titanium implant surface modification with hydroxyapatite nanoparticles in progressive early bone-implant fixation in vivo.
    Lin A; Wang CJ; Kelly J; Gubbi P; Nishimura I
    Int J Oral Maxillofac Implants; 2009; 24(5):808-16. PubMed ID: 19865620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of discrete calcium phosphate nanocrystals on bone-bonding to titanium surfaces.
    Mendes VC; Moineddin R; Davies JE
    Biomaterials; 2007 Nov; 28(32):4748-55. PubMed ID: 17697709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early bone anchorage to micro- and nano-topographically complex implant surfaces in hyperglycemia.
    Ajami E; Bell S; Liddell RS; Davies JE
    Acta Biomater; 2016 Jul; 39():169-179. PubMed ID: 27181877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Sigmoidal Nature of Bone Anchorage.
    Liddell RS; Davies JE
    Int J Oral Maxillofac Implants; 2022; 37(1):e1-e11. PubMed ID: 35235618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophilic surface of Ti6Al4V-ELI alloy improves the early bone apposition of sheep tibia.
    Sartoretto SC; Alves ATNN; Zarranz L; Jorge MZ; Granjeiro JM; Calasans-Maia MD
    Clin Oral Implants Res; 2017 Aug; 28(8):893-901. PubMed ID: 27317626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrete calcium phosphate nanocrystalline deposition enhances osteoconduction on titanium-based implant surfaces.
    Mendes VC; Moineddin R; Davies JE
    J Biomed Mater Res A; 2009 Aug; 90(2):577-85. PubMed ID: 18563827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A "best fit" approach for synergistic surface parameters to guide the design of candidate implant surfaces.
    Ay B; Mendes VC; Zhang L; Davies JE
    J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):2165-2177. PubMed ID: 30677220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo monitoring of the bone healing process around different titanium alloy implant surfaces placed into fresh extraction sockets.
    Colombo JS; Satoshi S; Okazaki J; Crean SJ; Sloan AJ; Waddington RJ
    J Dent; 2012 Apr; 40(4):338-46. PubMed ID: 22307025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photofunctionalization increases the bioactivity and osteoconductivity of the titanium alloy Ti6Al4V.
    Minamikawa H; Ikeda T; Att W; Hagiwara Y; Hirota M; Tabuchi M; Aita H; Park W; Ogawa T
    J Biomed Mater Res A; 2014 Oct; 102(10):3618-30. PubMed ID: 24248891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early bone healing around 2 different experimental, HA grit-blasted, and dual acid-etched titanium implant surfaces. A pilot study in rabbits.
    Gobbato L; Arguello E; Martin IS; Hawley CE; Griffin TJ
    Implant Dent; 2012 Dec; 21(6):454-60. PubMed ID: 23149502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in vitro and in vivo evaluation of bioactive titanium implants following sodium removal treatment.
    Fawzy AS; Amer MA
    Dent Mater; 2009 Jan; 25(1):48-57. PubMed ID: 18585776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone apposition to a titanium-zirconium alloy implant, as compared to two other titanium-containing implants.
    Saulacic N; Bosshardt DD; Bornstein MM; Berner S; Buser D
    Eur Cell Mater; 2012 Apr; 23():273-86; discussion 286-8. PubMed ID: 22492019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relative effect of surface strontium chemistry and super-hydrophilicity on the early osseointegration of moderately rough titanium surface in the rabbit femur.
    Park JW; Kwon TG; Suh JY
    Clin Oral Implants Res; 2013 Jun; 24(6):706-9. PubMed ID: 22409778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Bone Bonding to Nanotextured Implant Surfaces at a Short Healing Period: A Biomechanical Tensile Testing in the Rat Femur.
    Coelho PG; Zavanelli RA; Salles MB; Yeniyol S; Tovar N; Jimbo R
    Implant Dent; 2016 Jun; 25(3):322-7. PubMed ID: 27213527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of ultraviolet photoactivation of titanium on osseointegration in a rat model.
    Ueno T; Yamada M; Hori N; Suzuki T; Ogawa T
    Int J Oral Maxillofac Implants; 2010; 25(2):287-94. PubMed ID: 20369086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of polyelectrolyte multilayer coated titanium alloy surfaces on implant anchorage in rats.
    Zankovych S; Diefenbeck M; Bossert J; Mückley T; Schrader C; Schmidt J; Schubert H; Bischoff S; Faucon M; Finger U; Jandt KD
    Acta Biomater; 2013 Jan; 9(1):4926-34. PubMed ID: 22902814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental evidence for interfacial biochemical bonding in osseointegrated titanium implants.
    Sul YT; Kwon DH; Kang BS; Oh SJ; Johansson C
    Clin Oral Implants Res; 2013 Aug; 24 Suppl A100():8-19. PubMed ID: 22093014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anchorage of titanium implants with different surface characteristics: an experimental study in rabbits.
    Gotfredsen K; Berglundh T; Lindhe J
    Clin Implant Dent Relat Res; 2000; 2(3):120-8. PubMed ID: 11359256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Ultraviolet Photofunctionalization on Bone Augmentation and Integration Capabilities of Titanium Mesh and Implants.
    Hirota M; Ikeda T; Tabuchi M; Ozawa T; Tohnai I; Ogawa T
    Int J Oral Maxillofac Implants; 2017; 32(1):52-62. PubMed ID: 28095515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.