These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 31566277)

  • 21. Effective Interlayer Engineering of Two-Dimensional VOPO
    Peng L; Zhu Y; Peng X; Fang Z; Chu W; Wang Y; Xie Y; Li Y; Cha JJ; Yu G
    Nano Lett; 2017 Oct; 17(10):6273-6279. PubMed ID: 28873318
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Substantial Na-Ion Storage at High Current Rates: Redox-Pseudocapacitance through Sodium Oxide Formation.
    Portenkirchner E
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500888
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Black Anatase Titania with Ultrafast Sodium-Storage Performances Stimulated by Oxygen Vacancies.
    Chen J; Ding Z; Wang C; Hou H; Zhang Y; Wang C; Zou G; Ji X
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9142-51. PubMed ID: 27006999
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlled synthesis of hollow C@TiO
    Pei J; Geng H; Ang EH; Zhang L; Cao X; Zheng J; Gu H
    Nanoscale; 2018 Sep; 10(36):17327-17334. PubMed ID: 30198042
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pseudocapacitive Sodium Storage by Ferroelectric Sn
    Huang S; Meng C; Xiao M; Ren S; Wang S; Han D; Li Y; Meng Y
    Small; 2018 May; 14(21):e1704367. PubMed ID: 29676056
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering Titanium Dioxide Nanostructures for Enhanced Lithium-Ion Storage.
    Lee DH; Lee BH; Sinha AK; Park JH; Kim MS; Park J; Shin H; Lee KS; Sung YE; Hyeon T
    J Am Chem Soc; 2018 Dec; 140(48):16676-16684. PubMed ID: 30418777
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced Kinetics over VS
    Li W; Huang J; Li R; Cao L; Li X; Chen S; Feng L
    ChemSusChem; 2019 Dec; 12(23):5183-5191. PubMed ID: 31631573
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance.
    Chao D; Zhu C; Yang P; Xia X; Liu J; Wang J; Fan X; Savilov SV; Lin J; Fan HJ; Shen ZX
    Nat Commun; 2016 Jun; 7():12122. PubMed ID: 27358085
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrasmall TiO2 Nanoparticles in Situ Growth on Graphene Hybrid as Superior Anode Material for Sodium/Lithium Ion Batteries.
    Liu H; Cao K; Xu X; Jiao L; Wang Y; Yuan H
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11239-45. PubMed ID: 25965945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controllable growth of conducting polymers shell for constructing high-quality organic/inorganic core/shell nanostructures and their optical-electrochemical properties.
    Xia X; Chao D; Qi X; Xiong Q; Zhang Y; Tu J; Zhang H; Fan HJ
    Nano Lett; 2013 Sep; 13(9):4562-8. PubMed ID: 23977982
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intercalation Pseudocapacitance in Ultrathin VOPO4 Nanosheets: Toward High-Rate Alkali-Ion-Based Electrochemical Energy Storage.
    Zhu Y; Peng L; Chen D; Yu G
    Nano Lett; 2016 Jan; 16(1):742-7. PubMed ID: 26672409
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D ordered mesoporous TiO
    Zhang D; Liu L; Zhang Y; Wu H; Zheng Y; Gao G; Ding S
    Nanotechnology; 2019 Jun; 30(23):235401. PubMed ID: 30776784
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sodium storage in a promising MoS
    Wang R; Wang S; Zhang Y; Jin D; Tao X; Zhang L
    Nanoscale; 2018 Jun; 10(23):11165-11175. PubMed ID: 29873377
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of anatase TiO2 nanosheets with enhanced pseudocapacitive contribution for fast lithium storage.
    Hao B; Yan Y; Wang X; Chen G
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):6285-91. PubMed ID: 23742241
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interlinked multiphase Fe-doped MnO2 nanostructures: a novel design for enhanced pseudocapacitive performance.
    Wang Z; Wang F; Li Y; Hu J; Lu Y; Xu M
    Nanoscale; 2016 Apr; 8(13):7309-17. PubMed ID: 26977698
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coaxial Carbon Nanotube Supported TiO
    Ma C; Li X; Deng C; Hu YY; Lee S; Liao XZ; He YS; Ma ZF; Xiong H
    ACS Nano; 2019 Jan; 13(1):671-680. PubMed ID: 30592609
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Iron-Doped Cauliflower-Like Rutile TiO
    He H; Sun D; Zhang Q; Fu F; Tang Y; Guo J; Shao M; Wang H
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6093-6103. PubMed ID: 28121119
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Secondary Bonding Channel Design Induces Intercalation Pseudocapacitance toward Ultrahigh-Capacity and High-Rate Organic Electrodes.
    Hu Z; Zhao X; Li Z; Li S; Sun P; Wang G; Zhang Q; Liu J; Zhang L
    Adv Mater; 2021 Nov; 33(44):e2104039. PubMed ID: 34477273
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Defect Sites-Rich Porous Carbon with Pseudocapacitive Behaviors as an Ultrafast and Long-Term Cycling Anode for Sodium-Ion Batteries.
    Wang N; Wang Y; Xu X; Liao T; Du Y; Bai Z; Dou S
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9353-9361. PubMed ID: 29473726
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rational Design of Hierarchical Nanotubes through Encapsulating CoSe
    Gao J; Li Y; Shi L; Li J; Zhang G
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20635-20642. PubMed ID: 29799182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.