These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 3156634)
1. Phase behavior of membranes reconstituted from dipentadecanoylphosphatidylcholine and the Mg2+-dependent, Ca2+-stimulated adenosinetriphosphatase of sarcoplasmic reticulum: evidence for a disrupted lipid domain surrounding protein. Lentz BR; Clubb KW; Alford DR; Höchli M; Meissner G Biochemistry; 1985 Jan; 24(2):433-42. PubMed ID: 3156634 [TBL] [Abstract][Full Text] [Related]
2. Ordered and disordered phospholipid domains coexist in membranes containing the calcium pump protein of sarcoplasmic reticulum. Lentz BR; Clubb KW; Barrow DA; Meissner G Proc Natl Acad Sci U S A; 1983 May; 80(10):2917-21. PubMed ID: 6222375 [TBL] [Abstract][Full Text] [Related]
3. Effect of lipid membrane structure on the adenosine 5'-triphosphate hydrolyzing activity of the calcium-stimulated adenosinetriphosphatase of sarcoplasmic reticulum. Moore BM; Lentz BR; Hoechli M; Meissner G Biochemistry; 1981 Nov; 20(24):6810-7. PubMed ID: 6459119 [TBL] [Abstract][Full Text] [Related]
4. A freeze-fracture study of the aggregation state of Ca2+,Mg2+-ATPase of sarcoplasmic reticulum in reconstituted vesicles at low and high temperature. Anzai K; Usukura J; Shimizu H; Yamada E J Biochem; 1981 May; 89(5):1403-9. PubMed ID: 6115856 [TBL] [Abstract][Full Text] [Related]
6. Gel to liquid crystalline phase transition promotes a conformational reorganization of Ca2+, Mg2+-ATPase from sarcoplasmic reticulum in dimyristoylphosphatidylcholine reconstituted systems. Gutiérrez Merino C Arch Biochem Biophys; 1987 Jan; 252(1):303-14. PubMed ID: 2949696 [TBL] [Abstract][Full Text] [Related]
7. A spin-label and hydrogen-deuterium exchange reaction kinetics study of protein-lipid interactions in lipid-replaced Ca2+-ATPase of rabbit skeletal muscle sarcoplasmic reticulum. Higashi K; Kirino Y J Biochem; 1983 Dec; 94(6):1769-79. PubMed ID: 6323380 [TBL] [Abstract][Full Text] [Related]
8. Fluorescence quenching in model membranes. 3. Relationship between calcium adenosinetriphosphatase enzyme activity and the affinity of the protein for phosphatidylcholines with different acyl chain characteristics. Caffrey M; Feigenson GW Biochemistry; 1981 Mar; 20(7):1949-61. PubMed ID: 6452902 [TBL] [Abstract][Full Text] [Related]
9. Reconstitution of sarcoplasmic reticulum Ca2+-ATPase with excess lipid dispersion of the pump units. Andersen JP; Skriver E; Mahrous TS; Møller JV Biochim Biophys Acta; 1983 Feb; 728(1):1-10. PubMed ID: 6219700 [TBL] [Abstract][Full Text] [Related]
10. Interaction of the local anesthetics dibucaine and tetracaine with sarcoplasmic reticulum membranes. Differential scanning calorimetry and fluorescence studies. Gutiérrez-Merino C; Molina A; Escudero B; Diez A; Laynez J Biochemistry; 1989 Apr; 28(8):3398-406. PubMed ID: 2525923 [TBL] [Abstract][Full Text] [Related]
11. Effect of lipid composition on the calcium/adenosine 5'-triphosphate coupling ratio of the Ca2+-ATPase of sarcoplasmic reticulum. Navarro J; Toivio-Kinnucan M; Racker E Biochemistry; 1984 Jan; 23(1):130-5. PubMed ID: 6229280 [TBL] [Abstract][Full Text] [Related]
12. Modulation of the sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase by pentobarbital. Fernandez-Salguero P; Henao F; Laynez J; Gutierrez-Merino C Biochim Biophys Acta; 1990 Feb; 1022(1):33-40. PubMed ID: 2137349 [TBL] [Abstract][Full Text] [Related]
13. Annular lipids determine the ATPase activity of a calcium transport protein complexed with dipalmitoyllecithin. Hesketh TR; Smith GA; Houslay MD; McGill KA; Birdsall NJ; Metcalfe JC; Warren GB Biochemistry; 1976 Sep; 15(19):4145-51. PubMed ID: 183811 [TBL] [Abstract][Full Text] [Related]
14. Effects of sarcoplasmic reticulum Ca2+-ATPase on phospholipid bilayer fluidity: boundary lipid. Moore BM; Lentz BR; Meissner G Biochemistry; 1978 Nov; 17(24):5248-55. PubMed ID: 153147 [No Abstract] [Full Text] [Related]
15. Modification of membrane lipids of sarcoplasmic reticulum to probe the influence of bilayer fluidity on Ca2+-activated ATPase activity. Quinn PJ; Gomez R; Madden TD Biochem Soc Trans; 1980 Feb; 8(1):38-40. PubMed ID: 6445300 [No Abstract] [Full Text] [Related]
16. Correlation between lipid fluidity and tryptic susceptibility of Ca2+-ATPase in sarcoplasmic reticulum membranes. Blazyk J; Wu CJ; Wu SC J Biol Chem; 1985 Apr; 260(8):4845-9. PubMed ID: 3157685 [TBL] [Abstract][Full Text] [Related]
17. Monomeric state and Ca2+ transport by sarcoplasmic reticulum Ca2(+)-ATPase, reconstituted with an excess of phospholipid. Heegaard CW; le Maire M; Gulik-Krzywicki T; Møller JV J Biol Chem; 1990 Jul; 265(20):12020-8. PubMed ID: 2142157 [TBL] [Abstract][Full Text] [Related]
18. Preservation of the native structure and function of Ca2+-ATPase from sarcoplasmic reticulum: solubilization and reconstitution by new short-chain phospholipid detergent 1,2-diheptanoyl-sn-phosphatidylcholine. Shivanna BD; Rowe ES Biochem J; 1997 Jul; 325 ( Pt 2)(Pt 2):533-42. PubMed ID: 9230138 [TBL] [Abstract][Full Text] [Related]
19. Protein-lipid interactions. A nuclear magnetic resonance study of sarcoplasmic reticulum Ca2,Mg2+-ATPase, lipophilin, and proteolipid apoprotein-lecithin systems and a comparison with the effects of cholesterol. Rice DM; Meadows MD; Scheinman AO; Goñi FM; Gómez-Fernández JC; Moscarello MA; Chapman D; Oldfield E Biochemistry; 1979 Dec; 18(26):5893-903. PubMed ID: 160247 [TBL] [Abstract][Full Text] [Related]