These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31566383)

  • 41. Zinc absorption from low phytic acid genotypes of maize (Zea mays L.), Barley (Hordeum vulgare L.), and Rice (Oryza sativa L.) assessed in a suckling rat pup model.
    Lönnerdal B; Mendoza C; Brown KH; Rutger JN; Raboy V
    J Agric Food Chem; 2011 May; 59(9):4755-62. PubMed ID: 21417220
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Isolation and characterisation of an lpa (low phytic acid) mutant in common bean (Phaseolus vulgaris L.).
    Campion B; Sparvoli F; Doria E; Tagliabue G; Galasso I; Fileppi M; Bollini R; Nielsen E
    Theor Appl Genet; 2009 Apr; 118(6):1211-21. PubMed ID: 19224193
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phytic acid content may affect starch digestibility and glycemic index value of rice (Oryza sativa L.).
    Kumar A; Sahu C; Panda PA; Biswal M; Sah RP; Lal MK; Baig MJ; Swain P; Behera L; Chattopadhyay K; Sharma S
    J Sci Food Agric; 2020 Mar; 100(4):1598-1607. PubMed ID: 31773736
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chalky part differs in chemical composition from translucent part of japonica rice grains as revealed by a notched-belly mutant with white-belly.
    Lin Z; Zheng D; Zhang X; Wang Z; Lei J; Liu Z; Li G; Wang S; Ding Y
    J Sci Food Agric; 2016 Aug; 96(11):3937-43. PubMed ID: 27166835
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genetic Analysis and Molecular Mapping of the Quantitative Trait Loci Governing Low Phytic Acid Content in a Novel LPA Rice Mutant, PLM11.
    Gyani PC; Bollinedi H; Gopala Krishnan S; Vinod KK; Sachdeva A; Bhowmick PK; Ellur RK; Nagarajan M; Singh AK
    Plants (Basel); 2020 Dec; 9(12):. PubMed ID: 33302334
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Low phytic acid 1 mutation in maize modifies density, starch properties, cations, and fiber contents in the seed.
    Landoni M; Cerino Badone F; Haman N; Schiraldi A; Fessas D; Cesari V; Toschi I; Cremona R; Delogu C; Villa D; Cassani E; Pilu R
    J Agric Food Chem; 2013 May; 61(19):4622-30. PubMed ID: 23638689
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The low phytic acid1-241 (lpa1-241) maize mutation alters the accumulation of anthocyanin pigment in the kernel.
    Badone FC; Cassani E; Landoni M; Doria E; Panzeri D; Lago C; Mesiti F; Nielsen E; Pilu R
    Planta; 2010 Apr; 231(5):1189-99. PubMed ID: 20191364
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transcriptome analysis identifies differentially expressed genes in the progenies of a cross between two low phytic acid soybean mutants.
    Jin H; Yu X; Yang Q; Fu X; Yuan F
    Sci Rep; 2021 Apr; 11(1):8740. PubMed ID: 33888781
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds.
    Shi J; Wang H; Schellin K; Li B; Faller M; Stoop JM; Meeley RB; Ertl DS; Ranch JP; Glassman K
    Nat Biotechnol; 2007 Aug; 25(8):930-7. PubMed ID: 17676037
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differential expression of structural genes for the late phase of phytic acid biosynthesis in developing seeds of wheat (Triticum aestivum L.).
    Bhati KK; Aggarwal S; Sharma S; Mantri S; Singh SP; Bhalla S; Kaur J; Tiwari S; Roy JK; Tuli R; Pandey AK
    Plant Sci; 2014 Jul; 224():74-85. PubMed ID: 24908508
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differential effects of a transgene to confer low phytic acid in caryopses located at different positions in rice panicles.
    Kuwano M; Takaiwa F; Yoshida KT
    Plant Cell Physiol; 2009 Jul; 50(7):1387-92. PubMed ID: 19465440
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Whole genome-wide transcript profiling to identify differentially expressed genes associated with seed field emergence in two soybean low phytate mutants.
    Yuan F; Yu X; Dong D; Yang Q; Fu X; Zhu S; Zhu D
    BMC Plant Biol; 2017 Jan; 17(1):16. PubMed ID: 28100173
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant (lpa241).
    Pilu R; Panzeri D; Gavazzi G; Rasmussen SK; Consonni G; Nielsen E
    Theor Appl Genet; 2003 Oct; 107(6):980-7. PubMed ID: 14523526
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fine mapping of the rice low phytic acid (Lpa1) locus.
    Andaya CB; Tai TH
    Theor Appl Genet; 2005 Aug; 111(3):489-95. PubMed ID: 15940509
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Network Inference of Transcriptional Regulation in Germinating Low Phytic Acid Soybean Seeds.
    DeMers LC; Raboy V; Li S; Saghai Maroof MA
    Front Plant Sci; 2021; 12():708286. PubMed ID: 34531883
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of high-lysine rice via endosperm-specific expression of a foreign LYSINE RICH PROTEIN gene.
    Liu X; Zhang C; Wang X; Liu Q; Yuan D; Pan G; Sun SS; Tu J
    BMC Plant Biol; 2016 Jun; 16(1):147. PubMed ID: 27357959
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Expression and nucleotide sequence of an INS (3) P1 synthase gene associated with low-phytate kernels in maize (Zea mays L.).
    Shukla S; VanToai TT; Pratt RC
    J Agric Food Chem; 2004 Jul; 52(14):4565-70. PubMed ID: 15237968
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inventory and comparative analysis of rice and Arabidopsis ATP-binding cassette (ABC) systems.
    Garcia O; Bouige P; Forestier C; Dassa E
    J Mol Biol; 2004 Oct; 343(1):249-65. PubMed ID: 15381434
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Temporal and spatial patterns of accumulation of the transcript of Myo-inositol-1-phosphate synthase and phytin-containing particles during seed development in rice.
    Yoshida KT; Wada T; Koyama H; Mizobuchi-Fukuoka R; Naito S
    Plant Physiol; 1999 Jan; 119(1):65-72. PubMed ID: 9880347
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Two ATP Binding Cassette G Transporters, Rice ATP Binding Cassette G26 and ATP Binding Cassette G15, Collaboratively Regulate Rice Male Reproduction.
    Zhao G; Shi J; Liang W; Xue F; Luo Q; Zhu L; Qu G; Chen M; Schreiber L; Zhang D
    Plant Physiol; 2015 Nov; 169(3):2064-79. PubMed ID: 26392263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.