These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 31566452)
1. Detecting associations between dietary supplement intake and sentiments within mental disorder tweets. Wang Y; Zhao Y; Zhang J; Bian J; Zhang R Health Informatics J; 2020 Jun; 26(2):803-815. PubMed ID: 31566452 [TBL] [Abstract][Full Text] [Related]
2. Detecting Signals of Associations between Dietary Supplement Use and Mental Disorders from Twitter. Wang Y; Zhao Y; Bian J; Zhang R 2018 IEEE Int Conf Healthc Inform Workshop (2018); 2018 Jun; 2018():53-54. PubMed ID: 31452863 [TBL] [Abstract][Full Text] [Related]
3. Using Twitter to Examine Web-Based Patient Experience Sentiments in the United States: Longitudinal Study. Sewalk KC; Tuli G; Hswen Y; Brownstein JS; Hawkins JB J Med Internet Res; 2018 Oct; 20(10):e10043. PubMed ID: 30314959 [TBL] [Abstract][Full Text] [Related]
4. ReportAGE: Automatically extracting the exact age of Twitter users based on self-reports in tweets. Klein AZ; Magge A; Gonzalez-Hernandez G PLoS One; 2022; 17(1):e0262087. PubMed ID: 35077484 [TBL] [Abstract][Full Text] [Related]
5. Wildfires and social media discourse: exploring mental health and emotional wellbeing through Twitter. García YE; Villa-Pérez ME; Li K; Tai XH; Trejo LA; Daza-Torres ML; Montesinos-López JC; Nuño M Front Public Health; 2024; 12():1349609. PubMed ID: 38680934 [TBL] [Abstract][Full Text] [Related]
6. Detecting Signs of Depression in Tweets in Spanish: Behavioral and Linguistic Analysis. Leis A; Ronzano F; Mayer MA; Furlong LI; Sanz F J Med Internet Res; 2019 Jun; 21(6):e14199. PubMed ID: 31250832 [TBL] [Abstract][Full Text] [Related]
7. Deep neural networks ensemble for detecting medication mentions in tweets. Weissenbacher D; Sarker A; Klein A; O'Connor K; Magge A; Gonzalez-Hernandez G J Am Med Inform Assoc; 2019 Dec; 26(12):1618-1626. PubMed ID: 31562510 [TBL] [Abstract][Full Text] [Related]
8. Topics, Trends, and Sentiments of Tweets About the COVID-19 Pandemic: Temporal Infoveillance Study. Chandrasekaran R; Mehta V; Valkunde T; Moustakas E J Med Internet Res; 2020 Oct; 22(10):e22624. PubMed ID: 33006937 [TBL] [Abstract][Full Text] [Related]
9. Using Longitudinal Twitter Data for Digital Epidemiology of Childhood Health Outcomes: An Annotated Data Set and Deep Neural Network Classifiers. Klein AZ; Gutiérrez Gómez JA; Levine LD; Gonzalez-Hernandez G J Med Internet Res; 2024 Mar; 26():e50652. PubMed ID: 38526542 [TBL] [Abstract][Full Text] [Related]
10. Identifying self-disclosed anxiety on Twitter: A natural language processing approach. Zarate D; Ball M; Prokofieva M; Kostakos V; Stavropoulos V Psychiatry Res; 2023 Dec; 330():115579. PubMed ID: 37956589 [TBL] [Abstract][Full Text] [Related]
11. Tracking sentiments toward fat acceptance over a decade on Twitter. Bograd S; Chen B; Kavuluru R Health Informatics J; 2022; 28(1):14604582211065702. PubMed ID: 34986689 [TBL] [Abstract][Full Text] [Related]
12. Automatically Identifying Twitter Users for Interventions to Support Dementia Family Caregivers: Annotated Data Set and Benchmark Classification Models. Klein AZ; Magge A; O'Connor K; Gonzalez-Hernandez G JMIR Aging; 2022 Sep; 5(3):e39547. PubMed ID: 36112408 [TBL] [Abstract][Full Text] [Related]
13. Active neural networks to detect mentions of changes to medication treatment in social media. Weissenbacher D; Ge S; Klein A; O'Connor K; Gross R; Hennessy S; Gonzalez-Hernandez G J Am Med Inform Assoc; 2021 Nov; 28(12):2551-2561. PubMed ID: 34613417 [TBL] [Abstract][Full Text] [Related]
14. Identifying Key Topics Bearing Negative Sentiment on Twitter: Insights Concerning the 2015-2016 Zika Epidemic. Mamidi R; Miller M; Banerjee T; Romine W; Sheth A JMIR Public Health Surveill; 2019 Jun; 5(2):e11036. PubMed ID: 31165711 [TBL] [Abstract][Full Text] [Related]
15. Utilizing Twitter data for analysis of chemotherapy. Zhang L; Hall M; Bastola D Int J Med Inform; 2018 Dec; 120():92-100. PubMed ID: 30409350 [TBL] [Abstract][Full Text] [Related]
16. Celebrity suicide on Twitter: Activity, content and network analysis related to the death of Swedish DJ Tim Bergling alias Avicii. Niederkrotenthaler T; Till B; Garcia D J Affect Disord; 2019 Feb; 245():848-855. PubMed ID: 30699869 [TBL] [Abstract][Full Text] [Related]
17. The Resurgence of Cyber Racism During the COVID-19 Pandemic and its Aftereffects: Analysis of Sentiments and Emotions in Tweets. Dubey AD JMIR Public Health Surveill; 2020 Oct; 6(4):e19833. PubMed ID: 32936772 [TBL] [Abstract][Full Text] [Related]
18. Evaluating Behavioral and Linguistic Changes During Drug Treatment for Depression Using Tweets in Spanish: Pairwise Comparison Study. Leis A; Ronzano F; Mayer MA; Furlong LI; Sanz F J Med Internet Res; 2020 Dec; 22(12):e20920. PubMed ID: 33337338 [TBL] [Abstract][Full Text] [Related]
19. Identifying Sentiment of Hookah-Related Posts on Twitter. Allem JP; Ramanujam J; Lerman K; Chu KH; Boley Cruz T; Unger JB JMIR Public Health Surveill; 2017 Oct; 3(4):e74. PubMed ID: 29046267 [TBL] [Abstract][Full Text] [Related]
20. Studying expressions of loneliness in individuals using twitter: an observational study. Guntuku SC; Schneider R; Pelullo A; Young J; Wong V; Ungar L; Polsky D; Volpp KG; Merchant R BMJ Open; 2019 Nov; 9(11):e030355. PubMed ID: 31685502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]