These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 31566452)
21. Using Twitter to Understand the Human Bowel Disease Community: Exploratory Analysis of Key Topics. Pérez-Pérez M; Pérez-Rodríguez G; Fdez-Riverola F; Lourenço A J Med Internet Res; 2019 Aug; 21(8):e12610. PubMed ID: 31411142 [TBL] [Abstract][Full Text] [Related]
22. Social Network Analysis of COVID-19 Sentiments: Application of Artificial Intelligence. Hung M; Lauren E; Hon ES; Birmingham WC; Xu J; Su S; Hon SD; Park J; Dang P; Lipsky MS J Med Internet Res; 2020 Aug; 22(8):e22590. PubMed ID: 32750001 [TBL] [Abstract][Full Text] [Related]
23. Twitter and brachytherapy: An analysis of "tweets" over six years by patients and health care professionals. Thomas J; Prabhu AV; Heron DE; Beriwal S Brachytherapy; 2018; 17(6):1004-1010. PubMed ID: 30131255 [TBL] [Abstract][Full Text] [Related]
24. Public Perception Analysis of Tweets During the 2015 Measles Outbreak: Comparative Study Using Convolutional Neural Network Models. Du J; Tang L; Xiang Y; Zhi D; Xu J; Song HY; Tao C J Med Internet Res; 2018 Jul; 20(7):e236. PubMed ID: 29986843 [TBL] [Abstract][Full Text] [Related]
25. Ontology-Based Healthcare Named Entity Recognition from Twitter Messages Using a Recurrent Neural Network Approach. Batbaatar E; Ryu KH Int J Environ Res Public Health; 2019 Sep; 16(19):. PubMed ID: 31569654 [TBL] [Abstract][Full Text] [Related]
26. Applying Multiple Data Collection Tools to Quantify Human Papillomavirus Vaccine Communication on Twitter. Massey PM; Leader A; Yom-Tov E; Budenz A; Fisher K; Klassen AC J Med Internet Res; 2016 Dec; 18(12):e318. PubMed ID: 27919863 [TBL] [Abstract][Full Text] [Related]
27. Twitter Discussions and Emotions About the COVID-19 Pandemic: Machine Learning Approach. Xue J; Chen J; Hu R; Chen C; Zheng C; Su Y; Zhu T J Med Internet Res; 2020 Nov; 22(11):e20550. PubMed ID: 33119535 [TBL] [Abstract][Full Text] [Related]
28. Associations Between Affective States and Sexual and Health Status Among Men Who Have Sex With Men in China: Exploratory Study Using Social Media Data. Zheng ZW; Yang QL; Liu ZQ; Qiu JL; Gu J; Hao YT; Song C; Jia ZW; Hao C J Med Internet Res; 2020 Jan; 22(1):e13201. PubMed ID: 32012054 [TBL] [Abstract][Full Text] [Related]
29. Associations Between Exposure to and Expression of Negative Opinions About Human Papillomavirus Vaccines on Social Media: An Observational Study. Dunn AG; Leask J; Zhou X; Mandl KD; Coiera E J Med Internet Res; 2015 Jun; 17(6):e144. PubMed ID: 26063290 [TBL] [Abstract][Full Text] [Related]
31. Understanding Concerns, Sentiments, and Disparities Among Population Groups During the COVID-19 Pandemic Via Twitter Data Mining: Large-scale Cross-sectional Study. Zhang C; Xu S; Li Z; Hu S J Med Internet Res; 2021 Mar; 23(3):e26482. PubMed ID: 33617460 [TBL] [Abstract][Full Text] [Related]
32. Relationships between vitamin and mineral supplement use, dietary intake, and dietary adequacy among adolescents. Stang J; Story MT; Harnack L; Neumark-Sztainer D J Am Diet Assoc; 2000 Aug; 100(8):905-10. PubMed ID: 10955048 [TBL] [Abstract][Full Text] [Related]
33. Discovering Cohorts of Pregnant Women From Social Media for Safety Surveillance and Analysis. Sarker A; Chandrashekar P; Magge A; Cai H; Klein A; Gonzalez G J Med Internet Res; 2017 Oct; 19(10):e361. PubMed ID: 29084707 [TBL] [Abstract][Full Text] [Related]
34. Feeding Infants and Toddlers Study: do vitamin and mineral supplements contribute to nutrient adequacy or excess among US infants and toddlers? Briefel R; Hanson C; Fox MK; Novak T; Ziegler P J Am Diet Assoc; 2006 Jan; 106(1 Suppl 1):S52-65. PubMed ID: 16376630 [TBL] [Abstract][Full Text] [Related]
35. Characterizing the Discussion of Antibiotics in the Twittersphere: What is the Bigger Picture? Kendra RL; Karki S; Eickholt JL; Gandy L J Med Internet Res; 2015 Jun; 17(6):e154. PubMed ID: 26091775 [TBL] [Abstract][Full Text] [Related]
36. Supplement use: is there any nutritional benefit? Troppmann L; Gray-Donald K; Johns T J Am Diet Assoc; 2002 Jun; 102(6):818-25. PubMed ID: 12067048 [TBL] [Abstract][Full Text] [Related]
37. Predicting age groups of Twitter users based on language and metadata features. Morgan-Lopez AA; Kim AE; Chew RF; Ruddle P PLoS One; 2017; 12(8):e0183537. PubMed ID: 28850620 [TBL] [Abstract][Full Text] [Related]
38. A Scalable Framework to Detect Personal Health Mentions on Twitter. Yin Z; Fabbri D; Rosenbloom ST; Malin B J Med Internet Res; 2015 Jun; 17(6):e138. PubMed ID: 26048075 [TBL] [Abstract][Full Text] [Related]
39. Dietary supplement use by community-living population in Japan: data from the National Institute for Longevity Sciences Longitudinal Study of Aging (NILS-LSA). Imai T; Nakamura M; Ando F; Shimokata H J Epidemiol; 2006 Nov; 16(6):249-60. PubMed ID: 17085875 [TBL] [Abstract][Full Text] [Related]
40. Online Influence and Sentiment of Fitness Tweets: Analysis of Two Million Fitness Tweets. Vickey T; Breslin JG JMIR Public Health Surveill; 2017 Oct; 3(4):e82. PubMed ID: 29089294 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]