These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31566611)

  • 1. A Microfluidic Platform for Stimulating Chondrocytes with Dynamic Compression.
    Lee D; Erickson A; Dudley AT; Ryu S
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31566611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pneumatic microfluidic cell compression device for high-throughput study of chondrocyte mechanobiology.
    Lee D; Erickson A; You T; Dudley AT; Ryu S
    Lab Chip; 2018 Jul; 18(14):2077-2086. PubMed ID: 29897088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue engineering of cartilage using a mechanobioreactor exerting simultaneous mechanical shear and compression to simulate the rolling action of articular joints.
    Shahin K; Doran PM
    Biotechnol Bioeng; 2012 Apr; 109(4):1060-73. PubMed ID: 22095592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microfabricated platform for the study of chondrogenesis under different compressive loads.
    Kowsari-Esfahan R; Jahanbakhsh A; Saidi MS; Bonakdar S
    J Mech Behav Biomed Mater; 2018 Feb; 78():404-413. PubMed ID: 29223037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Mechanical properties of alginate hydrogels with different concentrations and their effects on the proliferation chondrocytes in vitro].
    Ren L; Feng X; Ma D; Chen F; Ding Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Oct; 29(5):884-8. PubMed ID: 23198428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaffold architecture determines chondrocyte response to externally applied dynamic compression.
    Mesallati T; Buckley CT; Nagel T; Kelly DJ
    Biomech Model Mechanobiol; 2013 Oct; 12(5):889-99. PubMed ID: 23160843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical stimulation of growth plate chondrocytes: Previous approaches and future directions.
    Lee D; Erickson A; Dudley AT; Ryu S
    Exp Mech; 2019 Nov; 59(9):1261-1274. PubMed ID: 31787777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ deformation of growth plate chondrocytes in stress-controlled static vs dynamic compression.
    Zimmermann EA; Bouguerra S; Londoño I; Moldovan F; Aubin CÉ; Villemure I
    J Biomech; 2017 May; 56():76-82. PubMed ID: 28365062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A highly organized three-dimensional alginate scaffold for cartilage tissue engineering prepared by microfluidic technology.
    Wang CC; Yang KC; Lin KH; Liu HC; Lin FH
    Biomaterials; 2011 Oct; 32(29):7118-26. PubMed ID: 21724248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compressive mechanical modulation alters the viability of growth plate chondrocytes in vitro.
    Kaviani R; Londono I; Parent S; Moldovan F; Villemure I
    J Orthop Res; 2015 Nov; 33(11):1587-93. PubMed ID: 26019113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical loading of chondrocytes embedded in 3D constructs: in vitro methods for assessment of morphological and metabolic response to compressive strain.
    Lee DA; Knight MM
    Methods Mol Med; 2004; 100():307-24. PubMed ID: 15280603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic platform for studying osteocyte mechanoregulation of breast cancer bone metastasis.
    Mei X; Middleton K; Shim D; Wan Q; Xu L; Ma YV; Devadas D; Walji N; Wang L; Young EWK; You L
    Integr Biol (Camb); 2019 Apr; 11(4):119-129. PubMed ID: 31125041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiscale modeling of growth plate cartilage mechanobiology.
    Gao J; Williams JL; Roan E
    Biomech Model Mechanobiol; 2017 Apr; 16(2):667-679. PubMed ID: 27770213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell and nucleus deformation in compressed chondrocyte-alginate constructs: temporal changes and calculation of cell modulus.
    Knight MM; van de Breevaart Bravenboer J; Lee DA; van Osch GJ; Weinans H; Bader DL
    Biochim Biophys Acta; 2002 Feb; 1570(1):1-8. PubMed ID: 11960682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering.
    Neumann AJ; Quinn T; Bryant SJ
    Acta Biomater; 2016 Jul; 39():1-11. PubMed ID: 27180026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of connexin hemichannels during chondroprogenitor cell differentiation in hydrogel versus microtissue culture models.
    Schrobback K; Klein TJ; Woodfield TB
    Tissue Eng Part A; 2015 Jun; 21(11-12):1785-94. PubMed ID: 25693425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic osmotic loading of chondrocytes using a novel microfluidic device.
    Chao PG; Tang Z; Angelini E; West AC; Costa KD; Hung CT
    J Biomech; 2005 Jun; 38(6):1273-81. PubMed ID: 15863112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain.
    Bryant SJ; Anseth KS; Lee DA; Bader DL
    J Orthop Res; 2004 Sep; 22(5):1143-9. PubMed ID: 15304291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cultivation of agarose-based microfluidic hydrogel promotes the development of large, full-thickness, tissue-engineered articular cartilage constructs.
    Goldman SM; Barabino GA
    J Tissue Eng Regen Med; 2017 Feb; 11(2):572-581. PubMed ID: 25186302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chondron curvature mapping in growth plate cartilage under compressive loading.
    Vendra BB; Roan E; Williams JL
    J Mech Behav Biomed Mater; 2018 Aug; 84():168-177. PubMed ID: 29783204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.