These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 31566701)
1. Nutritional requirements for Lactobacillus vini growth in sugarcane derivative substrate of ethanol fermentation. da Silva PKN; Mendonça AA; de Miranda AR; Calazans TLS; de Souza RB; de Morais MA FEMS Microbiol Lett; 2019 Aug; 366(16):. PubMed ID: 31566701 [TBL] [Abstract][Full Text] [Related]
3. The consequences of Lactobacillus vini and Dekkera bruxellensis as contaminants of the sugarcane-based ethanol fermentation. de Souza RB; dos Santos BM; de Fátima Rodrigues de Souza R; da Silva PK; Lucena BT; de Morais MA J Ind Microbiol Biotechnol; 2012 Nov; 39(11):1645-50. PubMed ID: 22842986 [TBL] [Abstract][Full Text] [Related]
4. Gene regulation of the Lactobacillus vini in response to industrial stress in the fuel ethanol production. Mendonça AA; da Silva PKN; Calazans TLS; de Souza RB; Elsztein C; de Morais Junior MA Microbiol Res; 2020 Jun; 236():126450. PubMed ID: 32146295 [TBL] [Abstract][Full Text] [Related]
5. Complex yeast-bacteria interactions affect the yield of industrial ethanol fermentation. Senne de Oliveira Lino F; Bajic D; Vila JCC; Sánchez A; Sommer MOA Nat Commun; 2021 Mar; 12(1):1498. PubMed ID: 33686084 [TBL] [Abstract][Full Text] [Related]
6. Biofilm formation and antimicrobial sensitivity of lactobacilli contaminants from sugarcane-based fuel ethanol fermentation. Dellias MTF; Borges CD; Lopes ML; da Cruz SH; de Amorim HV; Tsai SM Antonie Van Leeuwenhoek; 2018 Sep; 111(9):1631-1644. PubMed ID: 29478220 [TBL] [Abstract][Full Text] [Related]
7. The fermentation of sugarcane molasses by Dekkera bruxellensis and the mobilization of reserve carbohydrates. Pereira LF; Lucatti E; Basso LC; de Morais MA Antonie Van Leeuwenhoek; 2014 Mar; 105(3):481-9. PubMed ID: 24370978 [TBL] [Abstract][Full Text] [Related]
8. Effect of yeast inoculation rate on the metabolism of contaminating lactobacilli during fermentation of corn mash. Narendranath NV; Power R J Ind Microbiol Biotechnol; 2004 Dec; 31(12):581-4. PubMed ID: 15599666 [TBL] [Abstract][Full Text] [Related]
9. Yeast selection for fuel ethanol production in Brazil. Basso LC; de Amorim HV; de Oliveira AJ; Lopes ML FEMS Yeast Res; 2008 Nov; 8(7):1155-63. PubMed ID: 18752628 [TBL] [Abstract][Full Text] [Related]
10. Yeast Derived LysA2 Can Control Bacterial Contamination in Ethanol Fermentation. Kim JS; Daum MA; Jin YS; Miller MJ Viruses; 2018 May; 10(6):. PubMed ID: 29795003 [TBL] [Abstract][Full Text] [Related]
11. Solid state fermentation for extracellular polysaccharide production by Lactobacillus confusus with coconut water and sugar cane juice as renewable wastes. Seesuriyachan P; Techapun C; Shinkawa H; Sasaki K Biosci Biotechnol Biochem; 2010; 74(2):423-6. PubMed ID: 20139601 [TBL] [Abstract][Full Text] [Related]
12. Interaction of Lactobacillus vini with the ethanol-producing yeasts Dekkera bruxellensis and Saccharomyces cerevisiae. Tiukova I; Eberhard T; Passoth V Biotechnol Appl Biochem; 2014; 61(1):40-4. PubMed ID: 23772864 [TBL] [Abstract][Full Text] [Related]
13. Improvement and Metabolomics-Based Analysis of d-Lactic Acid Production from Agro-Industrial Wastes by Liang S; Jiang W; Song Y; Zhou SF J Agric Food Chem; 2020 Jul; 68(29):7660-7669. PubMed ID: 32603099 [TBL] [Abstract][Full Text] [Related]
14. Novel strategy using an adsorbent-column chromatography for effective ethanol production from sugarcane or sugar beet molasses. Hatano K; Kikuchi S; Nakamura Y; Sakamoto H; Takigami M; Kojima Y Bioresour Technol; 2009 Oct; 100(20):4697-703. PubMed ID: 19467586 [TBL] [Abstract][Full Text] [Related]
15. Conventional and nonconventional strategies for controlling bacterial contamination in fuel ethanol fermentations. Ceccato-Antonini SR World J Microbiol Biotechnol; 2018 May; 34(6):80. PubMed ID: 29802468 [TBL] [Abstract][Full Text] [Related]
16. The role of nisin in fuel ethanol production with Saccharomyces cerevisiae. Peng J; Zhang L; Gu ZH; Ding ZY; Shi GY Lett Appl Microbiol; 2012 Aug; 55(2):128-34. PubMed ID: 22691226 [TBL] [Abstract][Full Text] [Related]
17. Nisin incorporation enhances the inactivation of lactic acid bacteria during the acid wash step of bioethanol production from sugarcane juice. Zhang L; Holle MJ; Kim JS; Daum MA; Miller MJ Lett Appl Microbiol; 2019 Jul; 69(1):50-56. PubMed ID: 31004511 [TBL] [Abstract][Full Text] [Related]
18. Continuous ethanol production from sugarcane molasses using a newly designed combined bioreactor system by immobilized Saccharomyces cerevisiae. Xu W; Liang L; Song Z; Zhu M Biotechnol Appl Biochem; 2014; 61(3):289-96. PubMed ID: 24164318 [TBL] [Abstract][Full Text] [Related]
19. Characterization of the contaminant bacterial communities in sugarcane first-generation industrial ethanol production. Bonatelli ML; Quecine MC; Silva MS; Labate CA FEMS Microbiol Lett; 2017 Sep; 364(17):. PubMed ID: 28903464 [TBL] [Abstract][Full Text] [Related]
20. Continuous ethanol production from sugarcane molasses using a column reactor of immobilized Saccharomyces cerevisiae HAU-1. Sheoran A; Yadav BS; Nigam P; Singh D J Basic Microbiol; 1998; 38(2):123-8. PubMed ID: 9637012 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]