These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
431 related articles for article (PubMed ID: 31566837)
1. Nanostructured Substrates for Detection and Characterization of Circulating Rare Cells: From Materials Research to Clinical Applications. Dong J; Chen JF; Smalley M; Zhao M; Ke Z; Zhu Y; Tseng HR Adv Mater; 2020 Jan; 32(1):e1903663. PubMed ID: 31566837 [TBL] [Abstract][Full Text] [Related]
2. Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells. Lin M; Chen JF; Lu YT; Zhang Y; Song J; Hou S; Ke Z; Tseng HR Acc Chem Res; 2014 Oct; 47(10):2941-50. PubMed ID: 25111636 [TBL] [Abstract][Full Text] [Related]
3. NanoVelcro rare-cell assays for detection and characterization of circulating tumor cells. Jan YJ; Chen JF; Zhu Y; Lu YT; Chen SH; Chung H; Smalley M; Huang YW; Dong J; Chen LC; Yu HH; Tomlinson JS; Hou S; Agopian VG; Posadas EM; Tseng HR Adv Drug Deliv Rev; 2018 Feb; 125():78-93. PubMed ID: 29551650 [TBL] [Abstract][Full Text] [Related]
4. Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip. Sheng W; Ogunwobi OO; Chen T; Zhang J; George TJ; Liu C; Fan ZH Lab Chip; 2014 Jan; 14(1):89-98. PubMed ID: 24220648 [TBL] [Abstract][Full Text] [Related]
5. Size-matching hierarchical micropillar arrays for detecting circulating tumor cells in breast cancer patients' whole blood. Wang Z; Xu D; Wang X; Jin Y; Huo B; Wang Y; He C; Fu X; Lu N Nanoscale; 2019 Apr; 11(14):6677-6684. PubMed ID: 30899928 [TBL] [Abstract][Full Text] [Related]
6. A platform for primary tumor origin identification of circulating tumor cells via antibody cocktail-based in vivo capture and specific aptamer-based multicolor fluorescence imaging strategy. Jia M; Mao Y; Wu C; Wang S; Zhang H Anal Chim Acta; 2019 Nov; 1082():136-145. PubMed ID: 31472702 [TBL] [Abstract][Full Text] [Related]
7. Reversible capturing and voltammetric determination of circulating tumor cells using two-dimensional nanozyme based on PdMo decorated with gold nanoparticles and aptamer. Yang W; Fan L; Guo Z; Wu H; Chen J; Liu C; Yan Y; Ding S Mikrochim Acta; 2021 Sep; 188(10):319. PubMed ID: 34476628 [TBL] [Abstract][Full Text] [Related]
8. Aptamer-Based Methods for Detection of Circulating Tumor Cells and Their Potential for Personalized Diagnostics. Zamay AS; Zamay GS; Kolovskaya OS; Zamay TN; Berezovski MV Adv Exp Med Biol; 2017; 994():67-81. PubMed ID: 28560668 [TBL] [Abstract][Full Text] [Related]
9. Aptamer-based nanostructured interfaces for the detection and release of circulating tumor cells. Ding P; Wang Z; Wu Z; Zhu W; Liu L; Sun N; Pei R J Mater Chem B; 2020 Apr; 8(16):3408-3422. PubMed ID: 32022083 [TBL] [Abstract][Full Text] [Related]
10. Nanoroughened adhesion-based capture of circulating tumor cells with heterogeneous expression and metastatic characteristics. Chen W; Allen SG; Reka AK; Qian W; Han S; Zhao J; Bao L; Keshamouni VG; Merajver SD; Fu J BMC Cancer; 2016 Aug; 16():614. PubMed ID: 27501846 [TBL] [Abstract][Full Text] [Related]
11. Natural Biointerface Based on Cancer Cell Membranes for Specific Capture and Release of Circulating Tumor Cells. Ding P; Wang Z; Wu Z; Zhou Y; Sun N; Pei R ACS Appl Mater Interfaces; 2020 May; 12(18):20263-20270. PubMed ID: 32259427 [TBL] [Abstract][Full Text] [Related]
12. Programming thermoresponsiveness of NanoVelcro substrates enables effective purification of circulating tumor cells in lung cancer patients. Ke Z; Lin M; Chen JF; Choi JS; Zhang Y; Fong A; Liang AJ; Chen SF; Li Q; Fang W; Zhang P; Garcia MA; Lee T; Song M; Lin HA; Zhao H; Luo SC; Hou S; Yu HH; Tseng HR ACS Nano; 2015 Jan; 9(1):62-70. PubMed ID: 25495128 [TBL] [Abstract][Full Text] [Related]
13. Enumeration, Dielectrophoretic Capture, and Molecular Analysis of Circulating Tumor Cells. Yee SS; Carpenter EL Methods Mol Biol; 2017; 1634():193-202. PubMed ID: 28819852 [TBL] [Abstract][Full Text] [Related]
14. Effect of cell-nanostructured substrate interactions on the capture efficiency of HeLa cells. Kong J; Liu Y; Du X; Wang K; Chen W; Huang D; Wei Y; Mao H Biomed Mater; 2021 Mar; 16(3):. PubMed ID: 33260171 [TBL] [Abstract][Full Text] [Related]
15. Gelatin Nanoparticle-Coated Silicon Beads for Density-Selective Capture and Release of Heterogeneous Circulating Tumor Cells with High Purity. Huang Q; Wang FB; Yuan CH; He Z; Rao L; Cai B; Chen B; Jiang S; Li Z; Chen J; Liu W; Guo F; Ao Z; Chen S; Zhao XZ Theranostics; 2018; 8(6):1624-1635. PubMed ID: 29556345 [No Abstract] [Full Text] [Related]
16. Aptamer-Mediated Transparent-Biocompatible Nanostructured Surfaces for Hepotocellular Circulating Tumor Cells Enrichment. Wang S; Zhang C; Wang G; Cheng B; Wang Y; Chen F; Chen Y; Feng M; Xiong B Theranostics; 2016; 6(11):1877-86. PubMed ID: 27570557 [TBL] [Abstract][Full Text] [Related]
17. Automated Microfluidic Filtration and Immunocytochemistry Detection System for Capture and Enumeration of Circulating Tumor Cells and Other Rare Cell Populations in Blood. Pugia M; Magbanua MJM; Park JW Methods Mol Biol; 2017; 1634():119-131. PubMed ID: 28819845 [TBL] [Abstract][Full Text] [Related]
18. Biomimetic Microfluidic System for Fast and Specific Detection of Circulating Tumor Cells. Zhang F; Wu L; Nie W; Huang L; Zhang J; Li F; Xie HY Anal Chem; 2019 Dec; 91(24):15726-15731. PubMed ID: 31729220 [TBL] [Abstract][Full Text] [Related]
19. A Microwell-Assisted Multiaptamer Immunomagnetic Platform for Capture and Genetic Analysis of Circulating Tumor Cells. Dong Z; Tang C; Zhao L; Xu J; Wu Y; Tang X; Zhou W; He R; Zhao R; Xu L; Zhang Z; Fang X Adv Healthc Mater; 2018 Dec; 7(24):e1801231. PubMed ID: 30565898 [TBL] [Abstract][Full Text] [Related]
20. High-Efficiency Capture of Cells by Softening Cell Membrane. Ming R; Jiang Y; Fan J; An C; Li J; Chen T; Li X Small; 2022 Apr; 18(13):e2106547. PubMed ID: 35112794 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]