These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31566915)

  • 1. The role of sex in particle-induced inflammation and injury.
    Ray JL; Fletcher P; Burmeister R; Holian A
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 Mar; 12(2):e1589. PubMed ID: 31566915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of concentrated ambient particles on normal and hypersecretory airways in rats.
    Harkema JR; Keeler G; Wagner J; Morishita M; Timm E; Hotchkiss J; Marsik F; Dvonch T; Kaminski N; Barr E
    Res Rep Health Eff Inst; 2004 Aug; (120):1-68; discussion 69-79. PubMed ID: 15543855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dosimetry of inhaled elongate mineral particles in the respiratory tract: The impact of shape factor.
    Asgharian B; Owen TP; Kuempel ED; Jarabek AM
    Toxicol Appl Pharmacol; 2018 Dec; 361():27-35. PubMed ID: 29738812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hazard identification of inhaled nanomaterials: making use of short-term inhalation studies.
    Klein CL; Wiench K; Wiemann M; Ma-Hock L; van Ravenzwaay B; Landsiedel R
    Arch Toxicol; 2012 Jul; 86(7):1137-51. PubMed ID: 22532024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Risk assessment strategies for nanoscale and fine-sized titanium dioxide particles: Recognizing hazard and exposure issues.
    Warheit DB; Donner EM
    Food Chem Toxicol; 2015 Nov; 85():138-47. PubMed ID: 26362081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Testing strategies to establish the safety of nanomaterials: conclusions of an ECETOC workshop.
    Warheit DB; Borm PJ; Hennes C; Lademann J
    Inhal Toxicol; 2007 Jun; 19(8):631-43. PubMed ID: 17510836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhaled nanomaterials and the respiratory microbiome: clinical, immunological and toxicological perspectives.
    Poh TY; Ali NABM; Mac Aogáin M; Kathawala MH; Setyawati MI; Ng KW; Chotirmall SH
    Part Fibre Toxicol; 2018 Nov; 15(1):46. PubMed ID: 30458822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanotoxicology: The Need for a Human Touch?
    Miller MR; Poland CA
    Small; 2020 Sep; 16(36):e2001516. PubMed ID: 32697439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological interactions and toxicity of nanomaterials in the respiratory tract and various approaches of aerosol generation for toxicity testing.
    Creutzenberg O
    Arch Toxicol; 2012 Jul; 86(7):1117-22. PubMed ID: 22418596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grouping nanomaterials to predict their potential to induce pulmonary inflammation.
    Braakhuis HM; Oomen AG; Cassee FR
    Toxicol Appl Pharmacol; 2016 May; 299():3-7. PubMed ID: 26603513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The carcinogenic potential of nanomaterials, their release from products and options for regulating them.
    Becker H; Herzberg F; Schulte A; Kolossa-Gehring M
    Int J Hyg Environ Health; 2011 Jun; 214(3):231-8. PubMed ID: 21168363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significance of particle parameters in the evaluation of exposure-dose-response relationships of inhaled particles.
    Oberdorster G
    Inhal Toxicol; 1996; 8 Suppl():73-89. PubMed ID: 11542496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implications for occupational exposure to particulate matter.
    Utell MJ; Beckett WS
    Clin Occup Environ Med; 2006; 5(4):883-93. PubMed ID: 17110298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Air pollution, ultrafine and nanoparticle toxicology: cellular and molecular interactions.
    Stone V; Johnston H; Clift MJ
    IEEE Trans Nanobioscience; 2007 Dec; 6(4):331-40. PubMed ID: 18217626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles.
    Sayes CM; Reed KL; Warheit DB
    Toxicol Sci; 2007 May; 97(1):163-80. PubMed ID: 17301066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small difference in carcinogenic potency between GBP nanomaterials and GBP micromaterials.
    Gebel T
    Arch Toxicol; 2012 Jul; 86(7):995-1007. PubMed ID: 22418597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhalation of titanium dioxide induces endoplasmic reticulum stress-mediated autophagy and inflammation in mice.
    Yu KN; Sung JH; Lee S; Kim JE; Kim S; Cho WY; Lee AY; Park SJ; Lim J; Park C; Chae C; Lee JK; Lee J; Kim JS; Cho MH
    Food Chem Toxicol; 2015 Nov; 85():106-13. PubMed ID: 26253354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An update on the detoxification processes for silica particles and asbestos fibers: successess and limitations.
    Gulumian M
    J Toxicol Environ Health B Crit Rev; 2005; 8(6):453-83. PubMed ID: 16188731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mechanistic review of silica-induced inhalation toxicity.
    Kawasaki H
    Inhal Toxicol; 2015; 27(8):363-77. PubMed ID: 26194035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhaled particles in human disease and animal models: use of electron beam instrumentation.
    Brody AR
    Environ Health Perspect; 1984 Jun; 56():149-62. PubMed ID: 6090114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.