These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 31566984)

  • 1. Phase Diagram of Nanoscale Water on Solid Surfaces with Various Wettabilities.
    Qiu H; Guo W
    J Phys Chem Lett; 2019 Oct; 10(20):6316-6323. PubMed ID: 31566984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct ice patterns on solid surfaces with various wettabilities.
    Liu J; Zhu C; Liu K; Jiang Y; Song Y; Francisco JS; Zeng XC; Wang J
    Proc Natl Acad Sci U S A; 2017 Oct; 114(43):11285-11290. PubMed ID: 29073045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct observation of 2-dimensional ices on different surfaces near room temperature without confinement.
    Zhu C; Gao Y; Zhu W; Jiang J; Liu J; Wang J; Francisco JS; Zeng XC
    Proc Natl Acad Sci U S A; 2019 Aug; 116(34):16723-16728. PubMed ID: 31375634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing Liquid-Solid and Vapor-Liquid-Solid Interfaces of Hierarchical Surfaces Using High-Resolution Microscopy.
    Flynn Bolte KT; Balaraman RP; Jiao K; Tustison M; Kirkwood KS; Zhou C; Kohli P
    Langmuir; 2018 Mar; 34(12):3720-3730. PubMed ID: 29486565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Dynamics Simulations of Oil-Water Wetting Models of Organic Matter and Minerals in Shale at the Nanometer Scale.
    Dong Z; Xue H; Li B; Tian S; Lu S; Lu S
    J Nanosci Nanotechnol; 2021 Jan; 21(1):85-97. PubMed ID: 33213615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase diagram of water between hydrophobic surfaces.
    Koga K; Tanaka H
    J Chem Phys; 2005 Mar; 122(10):104711. PubMed ID: 15836349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of temperature on the structure and phase behavior of water confined by hydrophobic, hydrophilic, and heterogeneous surfaces.
    Giovambattista N; Rossky PJ; Debenedetti PG
    J Phys Chem B; 2009 Oct; 113(42):13723-34. PubMed ID: 19435300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces.
    Yan YY; Gao N; Barthlott W
    Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature dependence of the contact angle of water: A review of research progress, theoretical understanding, and implications for boiling heat transfer.
    Song JW; Fan LW
    Adv Colloid Interface Sci; 2021 Feb; 288():102339. PubMed ID: 33385775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ice and water droplets on graphite: a comparison of quantum and classical simulations.
    Ramírez R; Singh JK; Müller-Plathe F; Böhm MC
    J Chem Phys; 2014 Nov; 141(20):204701. PubMed ID: 25429951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the wettability of rough surfaces using simultaneous optical and electrochemical analysis of sessile droplets.
    Zahiri B; Sow PK; Kung CH; Mérida W
    J Colloid Interface Sci; 2017 Sep; 501():34-44. PubMed ID: 28433883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model.
    Malgarinos I; Nikolopoulos N; Marengo M; Antonini C; Gavaises M
    Adv Colloid Interface Sci; 2014 Oct; 212():1-20. PubMed ID: 25150614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct observation of drops on slippery lubricant-infused surfaces.
    Schellenberger F; Xie J; Encinas N; Hardy A; Klapper M; Papadopoulos P; Butt HJ; Vollmer D
    Soft Matter; 2015 Oct; 11(38):7617-26. PubMed ID: 26291621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure, Dynamics, and Wettability of Water at Metal Interfaces.
    Gim S; Cho KJ; Lim HK; Kim H
    Sci Rep; 2019 Oct; 9(1):14805. PubMed ID: 31616006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surprising Lack of Influence on Water Droplet Motion by Hydrophilic Microdomains on Checkerboard-like Surfaces with Matched Contact Angle Hysteresis.
    Becher-Nienhaus B; Liu G; Archer RJ; Hozumi A
    Langmuir; 2020 Jul; 36(27):7835-7843. PubMed ID: 32579368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics study of the influence of surfactant structure on surfactant-facilitated spreading of droplets on solid surfaces.
    Shen Y; Couzis A; Koplik J; Maldarelli C; Tomassone MS
    Langmuir; 2005 Dec; 21(26):12160-70. PubMed ID: 16342988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wetting hysteresis induced by temperature changes: Supercooled water on hydrophobic surfaces.
    Heydari G; Sedighi Moghaddam M; Tuominen M; Fielden M; Haapanen J; Mäkelä JM; Claesson PM
    J Colloid Interface Sci; 2016 Apr; 468():21-33. PubMed ID: 26821148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of nanoscale droplets on moving surfaces.
    Ritos K; Dongari N; Borg MK; Zhang Y; Reese JM
    Langmuir; 2013 Jun; 29(23):6936-43. PubMed ID: 23683083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.