These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 31566984)

  • 21. Interaction of oil drops with surfaces of different interfacial energy and topography.
    Cremaldi JC; Khosla T; Jin K; Cutting D; Wollman K; Pesika N
    Langmuir; 2015 Mar; 31(11):3385-90. PubMed ID: 25723337
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microscopic insight into surface wetting: relations between interfacial water structure and the underlying lattice constant.
    Zhu C; Li H; Huang Y; Zeng XC; Meng S
    Phys Rev Lett; 2013 Mar; 110(12):126101. PubMed ID: 25166822
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of wettability on sessile drop freezing: when superhydrophobicity stimulates an extreme freezing delay.
    Boinovich L; Emelyanenko AM; Korolev VV; Pashinin AS
    Langmuir; 2014 Feb; 30(6):1659-68. PubMed ID: 24491217
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancement of Water Evaporation on Solid Surfaces with Nanoscale Hydrophobic-Hydrophilic Patterns.
    Wan R; Wang C; Lei X; Zhou G; Fang H
    Phys Rev Lett; 2015 Nov; 115(19):195901. PubMed ID: 26588399
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pressure dependence of Kapitza resistance at gold/water and silicon/water interfaces.
    Pham A; Barisik M; Kim B
    J Chem Phys; 2013 Dec; 139(24):244702. PubMed ID: 24387383
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Femtosecond laser controlled wettability of solid surfaces.
    Yong J; Chen F; Yang Q; Hou X
    Soft Matter; 2015 Dec; 11(46):8897-906. PubMed ID: 26415826
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure and sum-frequency generation spectra of water on uncharged Q
    Smirnov KS
    Phys Chem Chem Phys; 2020 Jan; 22(4):2033-2045. PubMed ID: 31904065
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of surface interactions on heterogeneous ice nucleation for a monatomic water model.
    Reinhardt A; Doye JP
    J Chem Phys; 2014 Aug; 141(8):084501. PubMed ID: 25173015
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How surface wettability affects the binding, folding, and dynamics of hydrophobic polymers at interfaces.
    Jamadagni SN; Godawat R; Garde S
    Langmuir; 2009 Nov; 25(22):13092-9. PubMed ID: 19492828
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface-wetting characterization using contact-angle measurements.
    Huhtamäki T; Tian X; Korhonen JT; Ras RHA
    Nat Protoc; 2018 Jul; 13(7):1521-1538. PubMed ID: 29988109
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temperature dependence of contact angles of water on a stainless steel surface at elevated temperatures and pressures: In situ characterization and thermodynamic analysis.
    Song JW; Zeng DL; Fan LW
    J Colloid Interface Sci; 2020 Mar; 561():870-880. PubMed ID: 31771867
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Response to Comment on "Vapor Lubrication for Reducing Water and Ice Adhesion on Poly(dimethylsiloxane) Brushes": Organic Vapors Influence Water Contact Angles on Hydrophobic Surfaces.
    Li S; Butt HJ
    Adv Mater; 2023 Apr; 35(17):e2301905. PubMed ID: 36950943
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Drop coating deposition of a liposome suspension on surfaces with different wettabilities: "coffee ring" formation and suspension preconcentration.
    Kočišová E; Petr M; Šípová H; Kylián O; Procházka M
    Phys Chem Chem Phys; 2016 Dec; 19(1):388-393. PubMed ID: 27905608
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal face dependent intrinsic wettability of metal oxide surfaces.
    Zhu Z; Yu Z; Yun FF; Pan D; Tian Y; Jiang L; Wang X
    Natl Sci Rev; 2021 Jan; 8(1):nwaa166. PubMed ID: 34691554
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of air and water vapor environments on the hydrophobicity of surfaces.
    Weisensee PB; Neelakantan NK; Suslick KS; Jacobi AM; King WP
    J Colloid Interface Sci; 2015 Sep; 453():177-185. PubMed ID: 25985421
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Correlation of oil-water and air-water contact angles of diverse silanized surfaces and relationship to fluid interfacial tensions.
    Grate JW; Dehoff KJ; Warner MG; Pittman JW; Wietsma TW; Zhang C; Oostrom M
    Langmuir; 2012 May; 28(18):7182-8. PubMed ID: 22364481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaporation of picoliter droplets on surfaces with a range of wettabilities and thermal conductivities.
    Talbot EL; Berson A; Brown PS; Bain CD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061604. PubMed ID: 23005106
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigating the effects of solid surfaces on ice nucleation.
    Li K; Xu S; Shi W; He M; Li H; Li S; Zhou X; Wang J; Song Y
    Langmuir; 2012 Jul; 28(29):10749-54. PubMed ID: 22741592
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Liquids with Lower Wettability Can Exhibit Higher Friction on Hexagonal Boron Nitride: The Intriguing Role of Solid-Liquid Electrostatic Interactions.
    Govind Rajan A; Strano MS; Blankschtein D
    Nano Lett; 2019 Mar; 19(3):1539-1551. PubMed ID: 30694070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.