These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 31567077)

  • 1. Investigation of a Solid-State Tuning Behavior in Lithium Niobate.
    Branch DW; Jensen DS; Nordquist CD; Siddiqui A; Douglas JK; Eichenfield M; Friedmann TA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Feb; 67(2):365-373. PubMed ID: 31567077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spurious-Free Shear Horizontal Wave Resonators Based on 36Y-Cut LiNbO
    Liu Y; Liu K; Li J; Li Y; Wu T
    Micromachines (Basel); 2024 Mar; 15(4):. PubMed ID: 38675288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Laterally Vibrating Lithium Niobate MEMS Resonator Array Operating at 500 °C in Air.
    Eisner SR; Chapin CA; Lu R; Yang Y; Gong S; Senesky DG
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33383685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-Large-Coupling and Spurious-Free SH
    Zou J; Yantchev V; Iliev F; Plessky V; Samadian S; Hammond RB; Turner PJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Feb; 67(2):374-386. PubMed ID: 31567078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lithium Niobate Phononic Crystals for Tailoring Performance of RF Laterally Vibrating Devices.
    Lu R; Manzaneque T; Yang Y; Gong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):934-944. PubMed ID: 29856710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of acoustic waves in thin plates of lithium niobate and lithium tantalate.
    Kuznetsova IE; Zaitsev BD; Joshi SG; Borodina IA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Jan; 48(1):322-8. PubMed ID: 11367801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near Spurious-Free Thickness Shear Mode Lithium Niobate Resonator for Piezoelectric Power Conversion.
    Nguyen K; Chulukhadze V; Stolt E; Braun W; Segovia-Fernandez J; Chakraborty S; Rivas J; Lu R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Nov; 70(11):1536-1543. PubMed ID: 37549088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electro-optically tunable microring resonators on lithium niobate.
    Wang TJ; Chu CH; Lin CY
    Opt Lett; 2007 Oct; 32(19):2777-9. PubMed ID: 17909570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Analysis of Lithium-Niobate-Based Laterally Excited Bulk Acoustic Wave Resonator with Pentagon Spiral Electrodes.
    Xie Y; Liu W; Cai Y; Wen Z; Luo T; Liu Y; Sun C
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Wideband Oscillator Exploiting Multiple Resonances in Lithium Niobate MEMS Resonator.
    Kourani A; Lu R; Gong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Sep; 67(9):1854-1866. PubMed ID: 32324549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Electromechanical Coupling Coefficient of a Laterally Excited Bulk Wave Resonator with Composite Piezoelectric Film.
    Xie Y; Liu Y; Liu J; Wang L; Liu W; Soon BW; Cai Y; Sun C
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable filters using wideband elastic resonators.
    Kadota M; Ogami T; Kimura T; Daimon K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Oct; 60(10):2129-36. PubMed ID: 24081261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lithium Niobate MEMS Antisymmetric Lamb Wave Resonators with Support Structures.
    Zhang Y; Jiang Y; Tang C; Deng C; Du F; He J; Hu Q; Wang Q; Yu H; Wang Z
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partially Etched Piezoelectric Film Filled with SiO
    Yu Z; Guo Y; Fu S; Li B; Liu P; Zhang S; Sun Z
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gigahertz Low-Loss and Wideband S0 Mode Lithium Niobate Acoustic Delay Lines.
    Lu R; Manzaneque T; Yang Y; Li MH; Gong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Aug; 66(8):1373-1386. PubMed ID: 31094687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GHz Low-Loss Acoustic RF Couplers in Lithium Niobate Thin Film.
    Lu R; Yang Y; Li MH; Gong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jul; 67(7):1448-1461. PubMed ID: 32012008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GHz Broadband SH0 Mode Lithium Niobate Acoustic Delay Lines.
    Lu R; Yang Y; Li MH; Manzaneque T; Gong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Feb; 67(2):402-412. PubMed ID: 31562076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable thin film bulk acoustic wave resonator based on Ba(x)Sr(1-x)TiO3 thin film.
    Noeth A; Yamada T; Muralt P; Tagantsev AK; Setter N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):379-85. PubMed ID: 20178903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of 0° X-cut and Y + 36°-cut lithium niobate high-voltage sensing.
    Patel N; Branch DW; Schamiloglu E; Cular S
    Rev Sci Instrum; 2015 Aug; 86(8):085001. PubMed ID: 26329223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New method of change in temperature coefficient delay of acoustic waves in thin piezoelectric plates.
    Zaitsev BD; Kuznetsova IE; Joshi SG; Kuznetsova AS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Nov; 53(11):2113-20. PubMed ID: 17091846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.