BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31567079)

  • 1. Estimation of Backscatter Coefficients Using an In Situ Calibration Source.
    Nguyen TN; Tam AJ; Do MN; Oelze ML
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Feb; 67(2):308-317. PubMed ID: 31567079
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Zhao Y; Czarnota GJ; Park TH; Miller RJ; Oelze ML
    bioRxiv; 2024 Feb; ():. PubMed ID: 38370712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic backscatter coefficient estimation in nonlinear regime using an in situ calibration target.
    Coila A; Oelze ML
    J Acoust Soc Am; 2022 Jun; 151(6):4196. PubMed ID: 35778186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the estimation of backscatter coefficients using single-element focused transducers.
    Lavarello RJ; Ghoshal G; Oelze ML
    J Acoust Soc Am; 2011 May; 129(5):2903-11. PubMed ID: 21568393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of ultrasound attenuation and backscatter estimates in layered tissue-mimicking phantoms among three clinical scanners.
    Nam K; Rosado-Mendez IM; Wirtzfeld LA; Ghoshal G; Pawlicki AD; Madsen EL; Lavarello RJ; Oelze ML; Zagzebski JA; O'Brien WD; Hall TJ
    Ultrason Imaging; 2012 Oct; 34(4):209-21. PubMed ID: 23160474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of acoustic nonlinearities on the ultrasonic backscatter coefficient estimation.
    Coila A; Oelze ML
    J Acoust Soc Am; 2019 Jul; 146(1):85. PubMed ID: 31370607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of differences in backscatter coefficients among four ultrasound scanners with different beamforming methods.
    Omura M; Hasegawa H; Nagaoka R; Yoshida K; Yamaguchi T
    J Med Ultrason (2001); 2020 Jan; 47(1):35-46. PubMed ID: 31679096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Techniques and evaluation from a cross-platform imaging comparison of quantitative ultrasound parameters in an in vivo rodent fibroadenoma model.
    Wirtzfeld LA; Nam K; Labyed Y; Ghoshal G; Haak A; Sen-Gupta E; He Z; Hirtz NR; Miller RJ; Sarwate S; Simpson DG; Zagzebski JA; Bigelow TA; Oelze M; Hall TJ; O'Brien WD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jul; 60(7):1386-400. PubMed ID: 25004506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interlaboratory comparison of backscatter coefficient estimates for tissue-mimicking phantoms.
    Anderson JJ; Herd MT; King MR; Haak A; Hafez ZT; Song J; Oelze ML; Madsen EL; Zagzebski JA; O'Brien WD; Hall TJ
    Ultrason Imaging; 2010 Jan; 32(1):48-64. PubMed ID: 20690431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying and overcoming limitations with in situ calibration beads for quantitative ultrasound.
    Cario J; Coila A; Zhao Y; Miller RJ; L Oelze M
    J Acoust Soc Am; 2022 Apr; 151(4):2701. PubMed ID: 35461481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the spatial resolution of different high-frequency imaging systems using a novel anechoic-sphere phantom.
    Filoux E; Mamou J; Aristizábal O; Ketterling JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):994-1005. PubMed ID: 21622055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absolute backscatter coefficient estimates of tissue-mimicking phantoms in the 5-50 MHz frequency range.
    McCormick MM; Madsen EL; Deaner ME; Varghese T
    J Acoust Soc Am; 2011 Aug; 130(2):737-43. PubMed ID: 21877789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-imaging system comparison of backscatter coefficient estimates from a tissue-mimicking material.
    Nam K; Rosado-Mendez IM; Wirtzfeld LA; Kumar V; Madsen EL; Ghoshal G; Pawlicki AD; Oelze ML; Lavarello RJ; Bigelow TA; Zagzebski JA; O'Brien WD; Hall TJ
    J Acoust Soc Am; 2012 Sep; 132(3):1319-24. PubMed ID: 22978860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental application of ultrafast imaging to spectral tissue characterization.
    Garcia-Duitama J; Chayer B; Han A; Garcia D; Oelze ML; Cloutier G
    Ultrasound Med Biol; 2015 Sep; 41(9):2506-19. PubMed ID: 26119459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trade-offs in data acquisition and processing parameters for backscatter and scatterer size estimations.
    Liu W; Zagzebski JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):340-52. PubMed ID: 20178900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental assessment of four ultrasound scattering models for characterizing concentrated tissue-mimicking phantoms.
    Franceschini E; Guillermin R
    J Acoust Soc Am; 2012 Dec; 132(6):3735-47. PubMed ID: 23231104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative ultrasound estimates from populations of scatterers with continuous size distributions: effects of the size estimator algorithm.
    Lavarello R; Oelze M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Sep; 59(9):2066-76. PubMed ID: 23007782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Backscatter coefficient estimation using tapers with gaps.
    Luchies AC; Oelze ML
    Ultrason Imaging; 2015 Apr; 37(2):117-34. PubMed ID: 25189857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasound grayscale image quality comparison between a 2D intracavitary transducer and a 3D intracavitary transducer used in 2D mode: A phantom study.
    Zhou W; Long Z; Tradup DJ; Stekel SF; Browne JE; Brown DL; Hangiandreou NJ
    J Appl Clin Med Phys; 2019 Jun; 20(6):134-140. PubMed ID: 31002482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency dependence of attenuation and backscatter coefficient of ex vivo human lymphedema dermis.
    Omura M; Yoshida K; Akita S; Yamaguchi T
    J Med Ultrason (2001); 2020 Jan; 47(1):25-34. PubMed ID: 31515646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.