These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 31567098)
1. Phase-Synchronized Assistive Torque Control for the Correction of Kinematic Anomalies in the Gait Cycle. Aguirre-Ollinger G; Narayan A; Yu H IEEE Trans Neural Syst Rehabil Eng; 2019 Nov; 27(11):2305-2314. PubMed ID: 31567098 [TBL] [Abstract][Full Text] [Related]
3. Adaptive Oscillator-Based Assistive Torque Control for Gait Asymmetry Correction With a nSEA-Driven Hip Exoskeleton. Qian Y; Yu H; Fu C IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2906-2915. PubMed ID: 36223362 [TBL] [Abstract][Full Text] [Related]
4. Abnormal joint torque patterns exhibited by chronic stroke subjects while walking with a prescribed physiological gait pattern. Neckel ND; Blonien N; Nichols D; Hidler J J Neuroeng Rehabil; 2008 Sep; 5():19. PubMed ID: 18761735 [TBL] [Abstract][Full Text] [Related]
5. Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton. Agrawal SK; Banala SK; Fattah A; Sangwan V; Krishnamoorthy V; Scholz JP; Hsu WL IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):410-20. PubMed ID: 17894273 [TBL] [Abstract][Full Text] [Related]
6. The effect of stride length on lower extremity joint kinetics at various gait speeds. McGrath RL; Ziegler ML; Pires-Fernandes M; Knarr BA; Higginson JS; Sergi F PLoS One; 2019; 14(2):e0200862. PubMed ID: 30794565 [TBL] [Abstract][Full Text] [Related]
7. Novel velocity estimation for symmetric and asymmetric self-paced treadmill training. Canete S; Jacobs DA J Neuroeng Rehabil; 2021 Feb; 18(1):27. PubMed ID: 33546729 [TBL] [Abstract][Full Text] [Related]
8. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. Bortole M; Venkatakrishnan A; Zhu F; Moreno JC; Francisco GE; Pons JL; Contreras-Vidal JL J Neuroeng Rehabil; 2015 Jun; 12():54. PubMed ID: 26076696 [TBL] [Abstract][Full Text] [Related]
9. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control. McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269 [TBL] [Abstract][Full Text] [Related]
10. Effects of a wearable exoskeleton stride management assist system (SMA®) on spatiotemporal gait characteristics in individuals after stroke: a randomized controlled trial. Buesing C; Fisch G; O'Donnell M; Shahidi I; Thomas L; Mummidisetty CK; Williams KJ; Takahashi H; Rymer WZ; Jayaraman A J Neuroeng Rehabil; 2015 Aug; 12():69. PubMed ID: 26289955 [TBL] [Abstract][Full Text] [Related]
11. Immediate kinematic and muscle activity changes after a single robotic exoskeleton walking session post-stroke. Swank C; Almutairi S; Wang-Price S; Gao F Top Stroke Rehabil; 2020 Oct; 27(7):503-515. PubMed ID: 32077382 [No Abstract] [Full Text] [Related]
12. Relationship between magnitude of applied torque in pre-swing phase and gait change for prevention of trip in elderly people. Miyake T; Tsukune M; Kobayashi Y; Sugano S; Fujie MG Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6154-6157. PubMed ID: 28269657 [TBL] [Abstract][Full Text] [Related]
13. Relationship between assistive torque and knee biomechanics during exoskeleton walking in individuals with crouch gait. Lerner ZF; Damiano DL; Bulea TC IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():491-497. PubMed ID: 28813868 [TBL] [Abstract][Full Text] [Related]
14. Effect of Leg Extension Angle on Knee Flexion Angle during Swing Phase in Post-Stroke Gait. Matsuzawa Y; Miyazaki T; Takeshita Y; Higashi N; Hayashi H; Araki S; Nakatsuji S; Fukunaga S; Kawada M; Kiyama R Medicina (Kaunas); 2021 Nov; 57(11):. PubMed ID: 34833440 [No Abstract] [Full Text] [Related]
15. Single-stride exposure to pulse torque assistance provided by a robotic exoskeleton at the hip and knee joints. McGrath RL; Sergi F IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():874-879. PubMed ID: 31374740 [TBL] [Abstract][Full Text] [Related]
16. Design, simulation and modelling of auxiliary exoskeleton to improve human gait cycle. Ashkani O; Maleki A; Jamshidi N Australas Phys Eng Sci Med; 2017 Mar; 40(1):137-144. PubMed ID: 27896688 [TBL] [Abstract][Full Text] [Related]
17. Abnormal volitional hip torque phasing and hip impairments in gait post stroke. Hyngstrom A; Onushko T; Chua M; Schmit BD J Neurophysiol; 2010 Mar; 103(3):1557-68. PubMed ID: 20089823 [TBL] [Abstract][Full Text] [Related]
18. Recovery and compensation after robotic assisted gait training in chronic stroke survivors. De Luca A; Vernetti H; Capra C; Pisu I; Cassiano C; Barone L; Gaito F; Danese F; Antonio Checchia G; Lentino C; Giannoni P; Casadio M Disabil Rehabil Assist Technol; 2019 Nov; 14(8):826-838. PubMed ID: 29741134 [No Abstract] [Full Text] [Related]
19. Robot assisted gait training with active leg exoskeleton (ALEX). Banala SK; Kim SH; Agrawal SK; Scholz JP IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):2-8. PubMed ID: 19211317 [TBL] [Abstract][Full Text] [Related]
20. An assistive controller for a lower-limb exoskeleton for rehabilitation after stroke, and preliminary assessment thereof. Murray SA; Ha KH; Goldfarb M Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4083-6. PubMed ID: 25570889 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]