These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. The effects of anodal transcranial direct current stimulation and patterned electrical stimulation on spinal inhibitory interneurons and motor function in patients with spinal cord injury. Yamaguchi T; Fujiwara T; Tsai YA; Tang SC; Kawakami M; Mizuno K; Kodama M; Masakado Y; Liu M Exp Brain Res; 2016 Jun; 234(6):1469-78. PubMed ID: 26790423 [TBL] [Abstract][Full Text] [Related]
43. G. Heiner Sell memorial lecture: neuronal plasticity after spinal cord injury: significance for present and future treatments. Dietz V J Spinal Cord Med; 2006; 29(5):481-8. PubMed ID: 17274486 [TBL] [Abstract][Full Text] [Related]
44. And yet it moves: Recovery of volitional control after spinal cord injury. Taccola G; Sayenko D; Gad P; Gerasimenko Y; Edgerton VR Prog Neurobiol; 2018 Jan; 160():64-81. PubMed ID: 29102670 [TBL] [Abstract][Full Text] [Related]
45. Comorbid Traumatic Brain Injury and Spinal Cord Injury: Screening Validity and Effect on Outcomes. Bombardier CH; Lee DC; Tan DL; Barber JK; Hoffman JM Arch Phys Med Rehabil; 2016 Oct; 97(10):1628-34. PubMed ID: 27084266 [TBL] [Abstract][Full Text] [Related]
46. Activity-based therapy for recovery of walking in individuals with chronic spinal cord injury: results from a randomized clinical trial. Jones ML; Evans N; Tefertiller C; Backus D; Sweatman M; Tansey K; Morrison S Arch Phys Med Rehabil; 2014 Dec; 95(12):2239-46.e2. PubMed ID: 25102384 [TBL] [Abstract][Full Text] [Related]
47. Brain-controlled modulation of spinal circuits improves recovery from spinal cord injury. Bonizzato M; Pidpruzhnykova G; DiGiovanna J; Shkorbatova P; Pavlova N; Micera S; Courtine G Nat Commun; 2018 Aug; 9(1):3015. PubMed ID: 30068906 [TBL] [Abstract][Full Text] [Related]
48. Review of the Current Knowledge on the Role of Stem Cell Transplantation in Neurorehabilitation. Kamelska-Sadowska AM; Wojtkiewicz J; Kowalski IM Biomed Res Int; 2019; 2019():3290894. PubMed ID: 30931325 [TBL] [Abstract][Full Text] [Related]
49. A new age for rehabilitation. Edgerton VR; Roy RR Eur J Phys Rehabil Med; 2012 Mar; 48(1):99-109. PubMed ID: 22407010 [TBL] [Abstract][Full Text] [Related]
50. Improved grasp function with transcranial direct current stimulation in chronic spinal cord injury. Cortes M; Medeiros AH; Gandhi A; Lee P; Krebs HI; Thickbroom G; Edwards D NeuroRehabilitation; 2017; 41(1):51-59. PubMed ID: 28505987 [TBL] [Abstract][Full Text] [Related]
51. Transcutaneous Electrical Spinal Stimulation Promotes Long-Term Recovery of Upper Extremity Function in Chronic Tetraplegia. Inanici F; Samejima S; Gad P; Edgerton VR; Hofstetter CP; Moritz CT IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1272-1278. PubMed ID: 29877852 [TBL] [Abstract][Full Text] [Related]
52. Motor recovery after activity-based training with spinal cord epidural stimulation in a chronic motor complete paraplegic. Rejc E; Angeli CA; Atkinson D; Harkema SJ Sci Rep; 2017 Oct; 7(1):13476. PubMed ID: 29074997 [TBL] [Abstract][Full Text] [Related]
53. Spinal cord direct current stimulation differentially modulates neuronal activity in the dorsal and ventral spinal cord. Song W; Martin JH J Neurophysiol; 2017 Mar; 117(3):1143-1155. PubMed ID: 28031400 [TBL] [Abstract][Full Text] [Related]
54. New perspectives on improving upper extremity function after spinal cord injury. Beekhuizen KS J Neurol Phys Ther; 2005 Sep; 29(3):157-62. PubMed ID: 16398948 [TBL] [Abstract][Full Text] [Related]
55. Movement rehabilitation after spinal cord injuries: emerging concepts and future directions. Marsh BC; Astill SL; Utley A; Ichiyama RM Brain Res Bull; 2011 Mar; 84(4-5):327-36. PubMed ID: 20673791 [TBL] [Abstract][Full Text] [Related]
56. Activity-based therapy for recovery of walking in chronic spinal cord injury: results from a secondary analysis to determine responsiveness to therapy. Jones ML; Evans N; Tefertiller C; Backus D; Sweatman M; Tansey K; Morrison S Arch Phys Med Rehabil; 2014 Dec; 95(12):2247-52. PubMed ID: 25102385 [TBL] [Abstract][Full Text] [Related]
57. Portable neuromodulation induces neuroplasticity to re-activate motor function recovery from brain injury: a high-density MEG case study. D'Arcy RCN; Greene T; Greene D; Frehlick Z; Fickling SD; Campbell N; Etheridge T; Smith C; Bollinger F; Danilov Y; Livingstone A; Tannouri P; Martin P; Lakhani B J Neuroeng Rehabil; 2020 Dec; 17(1):158. PubMed ID: 33261623 [TBL] [Abstract][Full Text] [Related]
58. Basic concepts of activity-based interventions for improved recovery of motor function after spinal cord injury. Roy RR; Harkema SJ; Edgerton VR Arch Phys Med Rehabil; 2012 Sep; 93(9):1487-97. PubMed ID: 22920448 [TBL] [Abstract][Full Text] [Related]
59. The Translesional Spinal Network and Its Reorganization after Spinal Cord Injury. Krupa P; Siddiqui AM; Grahn PJ; Islam R; Chen BK; Madigan NN; Windebank AJ; Lavrov IA Neuroscientist; 2022 Apr; 28(2):163-179. PubMed ID: 33089762 [TBL] [Abstract][Full Text] [Related]
60. Recovery from a spinal cord injury: significance of compensation, neural plasticity, and repair. Curt A; Van Hedel HJ; Klaus D; Dietz V; J Neurotrauma; 2008 Jun; 25(6):677-85. PubMed ID: 18578636 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]