These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 31568205)

  • 1. Differences of attentional networks function in athletes from open-skill sports: an functional near-infrared spectroscopy study.
    Yu M; Liu YB; Yang G
    Neuroreport; 2019 Dec; 30(18):1239-1245. PubMed ID: 31568205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in executive function of the attention network between athletes from interceptive and strategic sports.
    Yu M; Liu Y
    J Mot Behav; 2021; 53(4):419-430. PubMed ID: 32654658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in right hemisphere fNIRS activation associated with executive network during performance of the lateralized attention network tast by elite, expert and novice ice hockey athletes.
    Yu M; Xu S; Hu H; Li S; Yang G
    Behav Brain Res; 2023 Apr; 443():114209. PubMed ID: 36368444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The activation of interactive attentional networks.
    Xuan B; Mackie MA; Spagna A; Wu T; Tian Y; Hof PR; Fan J
    Neuroimage; 2016 Apr; 129():308-319. PubMed ID: 26794640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation of brain functional stream architecture in athletes with fast demands of sensorimotor integration.
    Gao Q; Yu Y; Su X; Tao Z; Zhang M; Wang Y; Leng J; Sepulcre J; Chen H
    Hum Brain Mapp; 2019 Feb; 40(2):420-431. PubMed ID: 30277624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systems factorial technology provides novel insights into the cognitive processing characteristics of open-skill athletes.
    Wang CH; Fu HL; Kao SC; Moreau D; Yang CT
    Psychol Sport Exerc; 2023 May; 66():102395. PubMed ID: 37665857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bottom-Up and Top-Down Factors Differentially Influence Stimulus Representations Across Large-Scale Attentional Networks.
    Long NM; Kuhl BA
    J Neurosci; 2018 Mar; 38(10):2495-2504. PubMed ID: 29437930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attention and executive control in varsity athletes engaging in strategic and static sports.
    Rahimi A; Roberts SD; Baker JR; Wojtowicz M
    PLoS One; 2022; 17(4):e0266933. PubMed ID: 35452468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural Architecture of Selective Stopping Strategies: Distinct Brain Activity Patterns Are Associated with Attentional Capture But Not with Outright Stopping.
    Sebastian A; Rössler K; Wibral M; Mobascher A; Lieb K; Jung P; Tüscher O
    J Neurosci; 2017 Oct; 37(40):9785-9794. PubMed ID: 28887387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric attention networks: the case of children.
    Yaakoby-Rotem S; Geva R
    J Int Neuropsychol Soc; 2014 Apr; 20(4):434-43. PubMed ID: 24621562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions of Visuo-oculomotor Abilities to Interceptive Skills in Sports.
    Gao Y; Chen L; Yang SN; Wang H; Yao J; Dai Q; Chang S
    Optom Vis Sci; 2015 Jun; 92(6):679-89. PubMed ID: 25930979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of music-induced mood on attentional networks.
    Jiang J; Scolaro AJ; Bailey K; Chen A
    Int J Psychol; 2011 Jun; 46(3):214-22. PubMed ID: 22044234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential Modulation of Brain Signal Variability During Cognitive Control in Athletes with Different Domains of Expertise.
    Wang CH; Liang WK; Moreau D
    Neuroscience; 2020 Jan; 425():267-279. PubMed ID: 31809727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulations among the alerting, orienting and executive control networks.
    Callejas A; Lupiàñez J; Funes MJ; Tudela P
    Exp Brain Res; 2005 Nov; 167(1):27-37. PubMed ID: 16021429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficiency and interactions of alerting, orienting and executive networks: the impact of imperative stimulus type.
    Spagna A; Martella D; Sebastiani M; Maccari L; Marotta A; Casagrande M
    Acta Psychol (Amst); 2014 May; 148():209-15. PubMed ID: 24607440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemispheric asymmetry in the efficiency of attentional networks.
    Asanowicz D; Marzecová A; Jaśkowski P; Wolski P
    Brain Cogn; 2012 Jul; 79(2):117-28. PubMed ID: 22475579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connectome-based models predict attentional control in aging adults.
    Fountain-Zaragoza S; Samimy S; Rosenberg MD; Prakash RS
    Neuroimage; 2019 Feb; 186():1-13. PubMed ID: 30394324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of Multichannel Near Infrared Spectroscopy to Study Relationships Between Brain Regions and Neurocognitive Tasks of Selective/Divided Attention and 2-Back Working Memory.
    Tomita N; Imai S; Kanayama Y; Kawashima I; Kumano H
    Percept Mot Skills; 2017 Jun; 124(3):703-720. PubMed ID: 28347211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parsing the intrinsic networks underlying attention: a resting state study.
    Visintin E; De Panfilis C; Antonucci C; Capecci C; Marchesi C; Sambataro F
    Behav Brain Res; 2015 Feb; 278():315-22. PubMed ID: 25311282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemispheric modulations of the attentional networks.
    Spagna A; Martella D; Fuentes LJ; Marotta A; Casagrande M
    Brain Cogn; 2016 Oct; 108():73-80. PubMed ID: 27566000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.