These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31568436)

  • 1. Critical coupling and extreme confinement in nanogap antennas.
    Emeric L; Deeb C; Pardo F; Pelouard JL
    Opt Lett; 2019 Oct; 44(19):4761-4764. PubMed ID: 31568436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical Dark-Field and Electron Energy Loss Imaging and Spectroscopy of Symmetry-Forbidden Modes in Loaded Nanogap Antennas.
    Brintlinger T; Herzing AA; Long JP; Vurgaftman I; Stroud R; Simpkins BS
    ACS Nano; 2015 Jun; 9(6):6222-32. PubMed ID: 25961937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Surface Plasmon Polariton Excitation and Control over Outcoupling Mechanisms in Metal-Insulator-Metal Tunneling Junctions.
    Makarenko KS; Hoang TX; Duffin TJ; Radulescu A; Kalathingal V; Lezec HJ; Chu HS; Nijhuis CA
    Adv Sci (Weinh); 2020 Apr; 7(8):1900291. PubMed ID: 32328407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of the Nanoscale Gap Morphology on the Plasmon Coupling in Asymmetric Nanoparticle Dimer Antennas.
    Popp PS; Herrmann JF; Fritz EC; Ravoo BJ; Höppener C
    Small; 2016 Mar; 12(12):1667-75. PubMed ID: 26849412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct imaging of nanogap-mode plasmon-resonant fields.
    Tanaka Y; Ishiguro H; Fujiwara H; Yokota Y; Ueno K; Misawa H; Sasaki K
    Opt Express; 2011 Apr; 19(8):7726-33. PubMed ID: 21503082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing.
    Chen X; Lindquist NC; Klemme DJ; Nagpal P; Norris DJ; Oh SH
    Nano Lett; 2016 Dec; 16(12):7849-7856. PubMed ID: 27960527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime.
    Neubrech F; Weber D; Katzmann J; Huck C; Toma A; Di Fabrizio E; Pucci A; Härtling T
    ACS Nano; 2012 Aug; 6(8):7326-32. PubMed ID: 22804706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoantennas Inversely Designed to Couple Free Space and a Metal-Insulator-Metal Waveguide.
    Han Y; Lin Y; Ma W; Korvink JG; Duan H; Deng Y
    Nanomaterials (Basel); 2021 Nov; 11(12):. PubMed ID: 34947568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Semi-Classical View on Epsilon-Near-Zero Resonant Tunneling Modes in Metal/Insulator/Metal Nanocavities.
    Caligiuri V; Palei M; Biffi G; Artyukhin S; Krahne R
    Nano Lett; 2019 May; 19(5):3151-3160. PubMed ID: 30920844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accessing Plasmonic Hotspots Using Nanoparticle-on-Foil Constructs.
    Chikkaraddy R; Baumberg JJ
    ACS Photonics; 2021 Sep; 8(9):2811-2817. PubMed ID: 34553005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometric control over surface plasmon polariton out-coupling pathways in metal-insulator-metal tunnel junctions.
    Radulescu A; Makarenko KS; Hoang TX; Kalathingal V; Duffin TJ; Chu HS; Nijhuis CA
    Opt Express; 2021 Apr; 29(8):11987-12000. PubMed ID: 33984968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Nanogap Morphology on Plasmon Coupling.
    Kim M; Kwon H; Lee S; Yoon S
    ACS Nano; 2019 Oct; 13(10):12100-12108. PubMed ID: 31584259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Target-Triggered Assembly of Nanogap Antennas to Enhance the Fluorescence of Single Molecules and Their Application in MicroRNA Detection.
    Peng M; Sun F; Na N; Ouyang J
    Small; 2020 May; 16(19):e2000460. PubMed ID: 32309897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localized surface plasmon mode-enhanced spectrum-tunable radiation in electrically driven plasmonic antennas.
    Liu Y; Jiang Z; Qin J; Wang L
    Opt Lett; 2020 Oct; 45(19):5506-5509. PubMed ID: 33001938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dumbbell gold nanoparticle dimer antennas with advanced optical properties.
    Herrmann JF; Höppener C
    Beilstein J Nanotechnol; 2018; 9():2188-2197. PubMed ID: 30202689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides.
    Chen J; Smolyakov GA; Brueck SR; Malloy KJ
    Opt Express; 2008 Sep; 16(19):14902-9. PubMed ID: 18795027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves.
    Chen X; Park HR; Pelton M; Piao X; Lindquist NC; Im H; Kim YJ; Ahn JS; Ahn KJ; Park N; Kim DS; Oh SH
    Nat Commun; 2013; 4():2361. PubMed ID: 23999053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extreme nanophotonics from ultrathin metallic gaps.
    Baumberg JJ; Aizpurua J; Mikkelsen MH; Smith DR
    Nat Mater; 2019 Jul; 18(7):668-678. PubMed ID: 30936482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High efficiency coupling to metal-insulator-metal plasmonic waveguides.
    Blau Y; Gilad T; Hanein Y; Boag A; Scheuer J
    Opt Express; 2022 Apr; 30(8):13757-13764. PubMed ID: 35472981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.