These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 31568528)

  • 1. LOTUS: A single- and multitask machine learning algorithm for the prediction of cancer driver genes.
    Collier O; Stoven V; Vert JP
    PLoS Comput Biol; 2019 Sep; 15(9):e1007381. PubMed ID: 31568528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Classification and Structure-Functional Analysis of Cancer Mutations Reveal Unique Dynamic and Network Signatures of Driver Sites in Oncogenes and Tumor Suppressor Genes.
    Agajanian S; Odeyemi O; Bischoff N; Ratra S; Verkhivker GM
    J Chem Inf Model; 2018 Oct; 58(10):2131-2150. PubMed ID: 30253099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning methods for prediction of cancer driver genes: a survey paper.
    Andrades R; Recamonde-Mendoza M
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35323900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the evaluation of cancer driver genes.
    Tokheim CJ; Papadopoulos N; Kinzler KW; Vogelstein B; Karchin R
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14330-14335. PubMed ID: 27911828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DriverML: a machine learning algorithm for identifying driver genes in cancer sequencing studies.
    Han Y; Yang J; Qian X; Cheng WC; Liu SH; Hua X; Zhou L; Yang Y; Wu Q; Liu P; Lu Y
    Nucleic Acids Res; 2019 May; 47(8):e45. PubMed ID: 30773592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel network control model for identifying personalized driver genes in cancer.
    Guo WF; Zhang SW; Zeng T; Li Y; Gao J; Chen L
    PLoS Comput Biol; 2019 Nov; 15(11):e1007520. PubMed ID: 31765387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating machine learning methodologies for identification of cancer driver genes.
    Malebary SJ; Khan YD
    Sci Rep; 2021 Jun; 11(1):12281. PubMed ID: 34112883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of High-Impact cis-Regulatory Mutations Using Transcription Factor Specific Random Forest Models.
    Svetlichnyy D; Imrichova H; Fiers M; Kalender Atak Z; Aerts S
    PLoS Comput Biol; 2015 Nov; 11(11):e1004590. PubMed ID: 26562774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of constrained cancer driver genes based on mutation timing.
    Sakoparnig T; Fried P; Beerenwinkel N
    PLoS Comput Biol; 2015 Jan; 11(1):e1004027. PubMed ID: 25569148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of Gene Ontology terms and KEGG pathways for analysis and prediction of oncogenes.
    Xing Z; Chu C; Chen L; Kong X
    Biochim Biophys Acta; 2016 Nov; 1860(11 Pt B):2725-34. PubMed ID: 26801878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ontology-based prediction of cancer driver genes.
    Althubaiti S; Karwath A; Dallol A; Noor A; Alkhayyat SS; Alwassia R; Mineta K; Gojobori T; Beggs AD; Schofield PN; Gkoutos GV; Hoehndorf R
    Sci Rep; 2019 Nov; 9(1):17405. PubMed ID: 31757986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning optimized DriverDetect software for high precision prediction of deleterious mutations in human cancers.
    Koh HYK; Lam UTF; Ban KH; Chen ES
    Sci Rep; 2024 Sep; 14(1):22618. PubMed ID: 39349509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Latent Oncogenes with a Network Embedding Method and Random Forest.
    Zhao R; Hu B; Chen L; Zhou B
    Biomed Res Int; 2020; 2020():5160396. PubMed ID: 33029511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PATIENT-SPECIFIC DATA FUSION FOR CANCER STRATIFICATION AND PERSONALISED TREATMENT.
    Gligorijević V; Malod-Dognin N; Pržulj N
    Pac Symp Biocomput; 2016; 21():321-32. PubMed ID: 26776197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An evolution-based machine learning to identify cancer type-specific driver mutations.
    Kim D; Ha D; Lee K; Lee H; Kim I; Kim S
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36575568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SB Driver Analysis: a Sleeping Beauty cancer driver analysis framework for identifying and prioritizing experimentally actionable oncogenes and tumor suppressors.
    Newberg JY; Black MA; Jenkins NA; Copeland NG; Mann KM; Mann MB
    Nucleic Acids Res; 2018 Sep; 46(16):e94. PubMed ID: 29846651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ConsensusDriver Improves upon Individual Algorithms for Predicting Driver Alterations in Different Cancer Types and Individual Patients.
    Bertrand D; Drissler S; Chia BK; Koh JY; Li C; Suphavilai C; Tan IB; Nagarajan N
    Cancer Res; 2018 Jan; 78(1):290-301. PubMed ID: 29259006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovering potential cancer driver genes by an integrated network-based approach.
    Shi K; Gao L; Wang B
    Mol Biosyst; 2016 Aug; 12(9):2921-31. PubMed ID: 27426053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repulsion and attraction in searching: A hybrid algorithm based on gravitational kernel and vital few for cancer driver gene prediction.
    He Z; Lin Y; Wei R; Liu C; Jiang D
    Comput Biol Med; 2022 Dec; 151(Pt A):106236. PubMed ID: 36370584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. KatzDriver: A network based method to cancer causal genes discovery in gene regulatory network.
    Akhavan-Safar M; Teimourpour B
    Biosystems; 2021 Mar; 201():104326. PubMed ID: 33309969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.