These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 31568631)

  • 1. Spatial high resolution of actin filament organization by PeakForce atomic force microscopy.
    Liu L; Wei Y; Liu J; Wang K; Zhang J; Zhang P; Zhou Y; Li B
    Cell Prolif; 2020 Jan; 53(1):e12670. PubMed ID: 31568631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytoskeleton induced the changes of microvilli and mechanical properties in living cells by atomic force microscopy.
    Liu X; Wei Y; Li W; Li B; Liu L
    J Cell Physiol; 2021 May; 236(5):3725-3733. PubMed ID: 33169846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct observation of the actin filament by tip-scan atomic force microscopy.
    Narita A; Usukura E; Yagi A; Tateyama K; Akizuki S; Kikumoto M; Matsumoto T; Maéda Y; Ito S; Usukura J
    Microscopy (Oxf); 2016 Aug; 65(4):370-7. PubMed ID: 27242058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observing the growth of individual actin filaments in cell extracts by time-lapse atomic force microscopy.
    Lehto T; Miaczynska M; Zerial M; Müller DJ; Severin F
    FEBS Lett; 2003 Sep; 551(1-3):25-8. PubMed ID: 12965199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryoatomic force microscopy of filamentous actin.
    Shao Z; Shi D; Somlyo AV
    Biophys J; 2000 Feb; 78(2):950-8. PubMed ID: 10653807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualizing filamentous actin on lipid bilayers by atomic force microscopy in solution.
    Shi D; Somlyo AV; Somlyo AP; Shao Z
    J Microsc; 2001 Mar; 201(Pt 3):377-82. PubMed ID: 11240853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Actin Organization on the Stiffness of Living Breast Cancer Cells Revealed by Peak-Force Modulation Atomic Force Microscopy.
    Calzado-Martín A; Encinar M; Tamayo J; Calleja M; San Paulo A
    ACS Nano; 2016 Mar; 10(3):3365-74. PubMed ID: 26901115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preliminarily investigating the polymorphism of self-organized actin filament in vitro by atomic force microscope.
    Zhang J; Wang YL; Chen XY; He CL; Cheng C; Cao Y
    Acta Biochim Biophys Sin (Shanghai); 2004 Sep; 36(9):637-43. PubMed ID: 15346202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing actin filament and binding protein interaction using an atomic force microscopy.
    Han SW; Morita K; Simona P; Kihara T; Miyake J; Banu M; Adachi T
    J Nanosci Nanotechnol; 2014 Aug; 14(8):5654-7. PubMed ID: 25935984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatially and temporally synchronized atomic force and total internal reflection fluorescence microscopy for imaging and manipulating cells and biomolecules.
    Kellermayer MS; Karsai A; Kengyel A; Nagy A; Bianco P; Huber T; Kulcsár A; Niedetzky C; Proksch R; Grama L
    Biophys J; 2006 Oct; 91(7):2665-77. PubMed ID: 16861276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical Point Loading Induces Cortex Stiffening and Actin Reorganization.
    Hu J; Chen S; Hu W; Lü S; Long M
    Biophys J; 2019 Oct; 117(8):1405-1418. PubMed ID: 31585706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing in vivo dynamics of mitochondria and cortical actin networks using high-speed atomic force/fluorescence microscopy.
    Yoshida A; Sakai N; Uekusa Y; Deguchi K; Gilmore JL; Kumeta M; Ito S; Takeyasu K
    Genes Cells; 2015 Feb; 20(2):85-94. PubMed ID: 25440894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antiproliferative effects of cinobufacini on human hepatocellular carcinoma HepG2 cells detected by atomic force microscopy.
    Wu Q; Lin WD; Liao GQ; Zhang LG; Wen SQ; Lin JY
    World J Gastroenterol; 2015 Jan; 21(3):854-61. PubMed ID: 25624718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Filamentous actin organization in the unfertilized sea urchin egg cortex.
    Henson JH; Begg DA
    Dev Biol; 1988 Jun; 127(2):338-48. PubMed ID: 3378667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A tridimensional view of the organization of actin filaments in the central nervous system by use of fluorescent photooxidation.
    Capani F; Saraceno E; Boti VR; Aon-Bertolino L; Fernández JC; Gato F; Kruse MS; Giraldez L; Ellisman MH; Coirini H
    Biocell; 2008 Apr; 32(1):1-8. PubMed ID: 18669318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo dynamics of the cortical actin network revealed by fast-scanning atomic force microscopy.
    Zhang Y; Yoshida A; Sakai N; Uekusa Y; Kumeta M; Yoshimura SH
    Microscopy (Oxf); 2017 Aug; 66(4):272-282. PubMed ID: 28531263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Actin filament dynamics in living glial cells imaged by atomic force microscopy.
    Henderson E; Haydon PG; Sakaguchi DS
    Science; 1992 Sep; 257(5078):1944-6. PubMed ID: 1411511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of actin filaments in the rhabdomeral microvilli of Drosophila photoreceptors.
    Arikawa K; Hicks JL; Williams DS
    J Cell Biol; 1990 Jun; 110(6):1993-8. PubMed ID: 2112548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale insight into biochemical changes in cervical cancer cells exposed to adaptogenic drug.
    Pięta E
    Micron; 2023 Jul; 170():103462. PubMed ID: 37087964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Super-Resolution Three-Dimensional Imaging of Actin Filaments in Cultured Cells and the Brain
    Park CE; Cho Y; Cho I; Jung H; Kim B; Shin JH; Choi S; Kwon SK; Hahn YK; Chang JB
    ACS Nano; 2020 Nov; 14(11):14999-15010. PubMed ID: 33095573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.