These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 31568842)

  • 41. Drug drug interaction extraction from biomedical literature using syntax convolutional neural network.
    Zhao Z; Yang Z; Luo L; Lin H; Wang J
    Bioinformatics; 2016 Nov; 32(22):3444-3453. PubMed ID: 27466626
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Distributed representation and one-hot representation fusion with gated network for clinical semantic textual similarity.
    Xiong Y; Chen S; Qin H; Cao H; Shen Y; Wang X; Chen Q; Yan J; Tang B
    BMC Med Inform Decis Mak; 2020 Apr; 20(Suppl 1):72. PubMed ID: 32349764
    [TBL] [Abstract][Full Text] [Related]  

  • 43. ADPG: Biomedical entity recognition based on Automatic Dependency Parsing Graph.
    Yang Y; Lin H; Yang Z; Zhang Y; Zhao D; Huai S
    J Biomed Inform; 2023 Apr; 140():104317. PubMed ID: 36804374
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Visibility forecast in Jiangsu province based on the GCN-GRU model.
    Chen H; Xu Y; Gao Z; Kang J; Jiang Y; Li Z; Shen H
    Sci Rep; 2024 Jun; 14(1):12599. PubMed ID: 38824165
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Advancing medical imaging: detecting polypharmacy and adverse drug effects with Graph Convolutional Networks (GCN).
    Dara ON; Ibrahim AA; Mohammed TA
    BMC Med Imaging; 2024 Jul; 24(1):174. PubMed ID: 39009978
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mining e-cigarette adverse events in social media using Bi-LSTM recurrent neural network with word embedding representation.
    Xie J; Liu X; Dajun Zeng D
    J Am Med Inform Assoc; 2018 Jan; 25(1):72-80. PubMed ID: 28505280
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A novel feature-based approach to extract drug-drug interactions from biomedical text.
    Bui QC; Sloot PM; van Mulligen EM; Kors JA
    Bioinformatics; 2014 Dec; 30(23):3365-71. PubMed ID: 25143286
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recurrent neural networks with segment attention and entity description for relation extraction from clinical texts.
    Li Z; Yang J; Gou X; Qi X
    Artif Intell Med; 2019 Jun; 97():9-18. PubMed ID: 31202398
    [TBL] [Abstract][Full Text] [Related]  

  • 49. DDI-GCN: Drug-drug interaction prediction via explainable graph convolutional networks.
    Zhong Y; Zheng H; Chen X; Zhao Y; Gao T; Dong H; Luo H; Weng Z
    Artif Intell Med; 2023 Oct; 144():102640. PubMed ID: 37783544
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chemical-protein interaction extraction via contextualized word representations and multihead attention.
    Zhang Y; Lin H; Yang Z; Wang J; Sun Y
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 31125403
    [TBL] [Abstract][Full Text] [Related]  

  • 51. TP-DDI: Transformer-based pipeline for the extraction of Drug-Drug Interactions.
    Zaikis D; Vlahavas I
    Artif Intell Med; 2021 Sep; 119():102153. PubMed ID: 34531012
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Extracting biomedical relation from cross-sentence text using syntactic dependency graph attention network.
    Zhou X; Fu Q; Chen J; Liu L; Wang Y; Lu Y; Wu H
    J Biomed Inform; 2023 Aug; 144():104445. PubMed ID: 37467835
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Novel Fault Diagnosis Approach for Chillers Based on 1-D Convolutional Neural Network and Gated Recurrent Unit.
    Wang Z; Dong Y; Liu W; Ma Z
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32357428
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Extracting Biomedical Events with Parallel Multi-Pooling Convolutional Neural Networks.
    Li L; Liu Y; Qin M
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):599-607. PubMed ID: 30183640
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identifying drug-target interactions based on graph convolutional network and deep neural network.
    Zhao T; Hu Y; Valsdottir LR; Zang T; Peng J
    Brief Bioinform; 2021 Mar; 22(2):2141-2150. PubMed ID: 32367110
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhancing Extraction of Drug-Drug Interaction from Literature Using Neutral Candidates, Negation, and Clause Dependency.
    Bokharaeian B; Diaz A; Chitsaz H
    PLoS One; 2016; 11(10):e0163480. PubMed ID: 27695078
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A dual graph neural network for drug-drug interactions prediction based on molecular structure and interactions.
    Ma M; Lei X
    PLoS Comput Biol; 2023 Jan; 19(1):e1010812. PubMed ID: 36701288
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Extracting chemical-protein interactions from biomedical literature via granular attention based recurrent neural networks.
    Lu H; Li L; He X; Liu Y; Zhou A
    Comput Methods Programs Biomed; 2019 Jul; 176():61-68. PubMed ID: 31200912
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CID-GCN: An Effective Graph Convolutional Networks for Chemical-Induced Disease Relation Extraction.
    Zeng D; Zhao C; Quan Z
    Front Genet; 2021; 12():624307. PubMed ID: 33643385
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A two-stage deep learning approach for extracting entities and relationships from medical texts.
    Suárez-Paniagua V; Rivera Zavala RM; Segura-Bedmar I; Martínez P
    J Biomed Inform; 2019 Nov; 99():103285. PubMed ID: 31546016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.