BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 31568879)

  • 1. Inflammation via myeloid differentiation primary response gene 88 signaling mediates the fibrotic response to implantable synthetic poly(ethylene glycol) hydrogels.
    Amer LD; Saleh LS; Walker C; Thomas S; Janssen WJ; Alper S; Bryant SJ
    Acta Biomater; 2019 Dec; 100():105-117. PubMed ID: 31568879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking the foreign body response and protein adsorption to PEG-based hydrogels using proteomics.
    Swartzlander MD; Barnes CA; Blakney AK; Kaar JL; Kyriakides TR; Bryant SJ
    Biomaterials; 2015 Feb; 41():26-36. PubMed ID: 25522962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunomodulation by mesenchymal stem cells combats the foreign body response to cell-laden synthetic hydrogels.
    Swartzlander MD; Blakney AK; Amer LD; Hankenson KD; Kyriakides TR; Bryant SJ
    Biomaterials; 2015 Feb; 41():79-88. PubMed ID: 25522967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping Macrophage Polarization and Origin during the Progression of the Foreign Body Response to a Poly(ethylene glycol) Hydrogel Implant.
    Saleh LS; Amer LD; Thompson BJ; Danhorn T; Knapp JR; Gibbings SL; Thomas S; Barthel L; O'Connor BP; Janssen WJ; Alper S; Bryant SJ
    Adv Healthc Mater; 2022 May; 11(9):e2102209. PubMed ID: 34967497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The in vitro effects of macrophages on the osteogenic capabilities of MC3T3-E1 cells encapsulated in a biomimetic poly(ethylene glycol) hydrogel.
    Saleh LS; Carles-Carner M; Bryant SJ
    Acta Biomater; 2018 Apr; 71():37-48. PubMed ID: 29505890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal progression of the host response to implanted poly(ethylene glycol)-based hydrogels.
    Lynn AD; Blakney AK; Kyriakides TR; Bryant SJ
    J Biomed Mater Res A; 2011 Mar; 96(4):621-31. PubMed ID: 21268236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the in vitro macrophage response and in vivo host response to poly(ethylene glycol)-based hydrogels.
    Lynn AD; Kyriakides TR; Bryant SJ
    J Biomed Mater Res A; 2010 Jun; 93(3):941-53. PubMed ID: 19708075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Foreign body response to subcutaneous biomaterial implants in a mast cell-deficient Kit(w-Sh) murine model.
    Avula MN; Rao AN; McGill LD; Grainger DW; Solzbacher F
    Acta Biomater; 2014 May; 10(5):1856-63. PubMed ID: 24406200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous Precision-Templated 40 μm Pore Scaffolds Promote Healing through Synergy in Macrophage Receptor with Collagenous Structure and Toll-Like Receptor Signaling.
    Chan NR; Hwang B; Mulligan MS; Ratner BD; Bryers JD
    Tissue Eng Part A; 2024 Apr; 30(7-8):287-298. PubMed ID: 38205652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zwitterionic PEG-PC Hydrogels Modulate the Foreign Body Response in a Modulus-Dependent Manner.
    Jansen LE; Amer LD; Chen EY; Nguyen TV; Saleh LS; Emrick T; Liu WF; Bryant SJ; Peyton SR
    Biomacromolecules; 2018 Jul; 19(7):2880-2888. PubMed ID: 29698603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MyD88-dependent Toll-like receptor 2 signaling modulates macrophage activation on lysate-adsorbed Teflon™ AF surfaces in an
    McKiel LA; Ballantyne LL; Negri GL; Woodhouse KA; Fitzpatrick LE
    Front Immunol; 2023; 14():1232586. PubMed ID: 37691934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the host response to cell-laden poly(ethylene glycol)-based hydrogels.
    Swartzlander MD; Lynn AD; Blakney AK; Kyriakides TR; Bryant SJ
    Biomaterials; 2013 Jan; 34(4):952-64. PubMed ID: 23149012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The In Vitro and In Vivo Response to MMP-Sensitive Poly(Ethylene Glycol) Hydrogels.
    Amer LD; Bryant SJ
    Ann Biomed Eng; 2016 Jun; 44(6):1959-69. PubMed ID: 27080375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels.
    Blakney AK; Swartzlander MD; Bryant SJ
    J Biomed Mater Res A; 2012 Jun; 100(6):1375-86. PubMed ID: 22407522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of functional groups of poly(ethylene glycol) macromers on the physical properties of photo-polymerized hydrogels and the local inflammatory response in the host.
    Day JR; David A; Kim J; Farkash EA; Cascalho M; Milašinović N; Shikanov A
    Acta Biomater; 2018 Feb; 67():42-52. PubMed ID: 29242160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The extended effect of adsorbed damage-associated molecular patterns and Toll-like receptor 2 signaling on macrophage-material interactions.
    Kaushal A; Zhang Y; Ballantyne LL; Fitzpatrick LE
    Front Bioeng Biotechnol; 2022; 10():959512. PubMed ID: 36091432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A self-cleaning, mechanically robust membrane for minimizing the foreign body reaction: towards extending the lifetime of sub-Q glucose biosensors.
    Means AK; Dong P; Clubb FJ; Friedemann MC; Colvin LE; Shrode CA; Coté GL; Grunlan MA
    J Mater Sci Mater Med; 2019 Jun; 30(7):79. PubMed ID: 31240399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Soft Zwitterionic Hydrogel as Potential Coating on a Polyimide Surface to Reduce Foreign Body Reaction to Intraneural Electrodes.
    Gori M; Giannitelli SM; Vadalà G; Papalia R; Zollo L; Sanchez M; Trombetta M; Rainer A; Di Pino G; Denaro V
    Molecules; 2022 May; 27(10):. PubMed ID: 35630604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal and spatial distribution of macrophage phenotype markers in the foreign body response to glutaraldehyde-crosslinked gelatin hydrogels.
    Yu T; Wang W; Nassiri S; Kwan T; Dang C; Liu W; Spiller KL
    J Biomater Sci Polym Ed; 2016; 27(8):721-42. PubMed ID: 26902292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulator of calcineurin 1 differentially regulates TLR-dependent MyD88 and TRIF signaling pathways.
    Pang Z; Junkins RD; Raudonis R; MacNeil AJ; McCormick C; Cheng Z; Lin TJ
    PLoS One; 2018; 13(5):e0197491. PubMed ID: 29799862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.