These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 31568949)
1. Biological removal of pharmaceuticals by Navicula sp. and biotransformation of bezafibrate. Ding T; Wang S; Yang B; Li J Chemosphere; 2020 Feb; 240():124949. PubMed ID: 31568949 [TBL] [Abstract][Full Text] [Related]
2. Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor. Quintana JB; Weiss S; Reemtsma T Water Res; 2005 Jul; 39(12):2654-64. PubMed ID: 15979124 [TBL] [Abstract][Full Text] [Related]
3. Toxicity, degradation and metabolic fate of ibuprofen on freshwater diatom Navicula sp. Ding T; Yang M; Zhang J; Yang B; Lin K; Li J; Gan J J Hazard Mater; 2017 May; 330():127-134. PubMed ID: 28214648 [TBL] [Abstract][Full Text] [Related]
4. Pharmaceuticals in freshwater aquatic environments: A comparison of the African and European challenge. Fekadu S; Alemayehu E; Dewil R; Van der Bruggen B Sci Total Environ; 2019 Mar; 654():324-337. PubMed ID: 30448654 [TBL] [Abstract][Full Text] [Related]
5. Uptake from water, biotransformation, and biliary excretion of pharmaceuticals by rainbow trout. Lahti M; Brozinski JM; Jylhä A; Kronberg L; Oikari A Environ Toxicol Chem; 2011 Jun; 30(6):1403-11. PubMed ID: 21337612 [TBL] [Abstract][Full Text] [Related]
6. Carbamazepine, diclofenac, ibuprofen and bezafibrate--investigations on the behaviour of selected pharmaceuticals during wastewater treatment. Strenn B; Clara M; Gans O; Kreuzinger N Water Sci Technol; 2004; 50(5):269-76. PubMed ID: 15497857 [TBL] [Abstract][Full Text] [Related]
7. The role of sorption and biodegradation in the removal of acetaminophen, carbamazepine, caffeine, naproxen and sulfamethoxazole during soil contact: A kinetics study. Martínez-Hernández V; Meffe R; Herrera López S; de Bustamante I Sci Total Environ; 2016 Jul; 559():232-241. PubMed ID: 27070381 [TBL] [Abstract][Full Text] [Related]
8. Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Höje River in Sweden. Bendz D; Paxéus NA; Ginn TR; Loge FJ J Hazard Mater; 2005 Jul; 122(3):195-204. PubMed ID: 15967274 [TBL] [Abstract][Full Text] [Related]
9. Identification of the pharmaceuticals for human use contaminating the Italian aquatic environment. Zuccato E; Castiglioni S; Fanelli R J Hazard Mater; 2005 Jul; 122(3):205-9. PubMed ID: 15967275 [TBL] [Abstract][Full Text] [Related]
10. Toxic effects and metabolic fate of carbamazepine in diatom Navicula sp. as influenced by humic acid and nitrogen species. Ding T; Lin K; Yang B; Yang M; Li J J Hazard Mater; 2019 Oct; 378():120763. PubMed ID: 31207484 [TBL] [Abstract][Full Text] [Related]
11. Batch versus continuous feeding strategies for pharmaceutical removal by subsurface flow constructed wetland. Zhang DQ; Gersberg RM; Zhu J; Hua T; Jinadasa KB; Tan SK Environ Pollut; 2012 Aug; 167():124-31. PubMed ID: 22564400 [TBL] [Abstract][Full Text] [Related]
12. Investigating natural attenuation of pharmaceuticals through unsaturated column tests. Martínez-Hernández V; Meffe R; Kohfahl C; de Bustamante I Chemosphere; 2017 Jun; 177():292-302. PubMed ID: 28314234 [TBL] [Abstract][Full Text] [Related]
13. Characteristics of removal of waste-water marking pharmaceuticals with typical hydrophytes in the urban rivers. Zhou H; Liu X; Chen X; Ying T; Ying Z Sci Total Environ; 2018 Sep; 636():1291-1302. PubMed ID: 29913591 [TBL] [Abstract][Full Text] [Related]
14. Removal of pharmaceuticals in drinking water treatment: effect of chemical coagulation. Vieno N; Tuhkanen T; Kronberg L Environ Technol; 2006 Feb; 27(2):183-92. PubMed ID: 16506514 [TBL] [Abstract][Full Text] [Related]
15. Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters. Lindqvist N; Tuhkanen T; Kronberg L Water Res; 2005 Jun; 39(11):2219-28. PubMed ID: 15935437 [TBL] [Abstract][Full Text] [Related]
16. Role of biodegradation in the removal of pharmaceutically active compounds with different bulk organic matter characteristics through managed aquifer recharge: batch and column studies. Maeng SK; Sharma SK; Abel CD; Magic-Knezev A; Amy GL Water Res; 2011 Oct; 45(16):4722-36. PubMed ID: 21802106 [TBL] [Abstract][Full Text] [Related]
17. Influence of multi-walled carbon nanotubes on the toxicity and removal of carbamazepine in diatom Navicula sp. Ding T; Li W; Li J Sci Total Environ; 2019 Dec; 697():134104. PubMed ID: 31487584 [TBL] [Abstract][Full Text] [Related]
18. Distribution and ecological risk of pharmaceuticals in surface water of the Yeongsan river, Republic of Korea. Na TW; Kang TW; Lee KH; Hwang SH; Jung HJ; Kim K Ecotoxicol Environ Saf; 2019 Oct; 181():180-186. PubMed ID: 31185432 [TBL] [Abstract][Full Text] [Related]
19. Fate of pharmaceutical compounds in hydroponic mesocosms planted with Scirpus validus. Zhang DQ; Gersberg RM; Hua T; Zhu J; Goyal MK; Ng WJ; Tan SK Environ Pollut; 2013 Oct; 181():98-106. PubMed ID: 23845767 [TBL] [Abstract][Full Text] [Related]
20. Human pharmaceuticals in wastewaters from urbanized areas of Argentina. Elorriaga Y; Marino DJ; Carriquiriborde P; Ronco AE Bull Environ Contam Toxicol; 2013 Apr; 90(4):397-400. PubMed ID: 23229304 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]