BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 31569001)

  • 1. Effects of diameters and crystals of titanium dioxide nanotube arrays on blood compatibility and endothelial cell behaviors.
    Gong Z; Hu Y; Gao F; Quan L; Liu T; Gong T; Pan C
    Colloids Surf B Biointerfaces; 2019 Dec; 184():110521. PubMed ID: 31569001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved Blood Compatibility and Endothelialization of Titanium Oxide Nanotube Arrays on Titanium Surface by Zinc Doping.
    Pan C; Hu Y; Gong Z; Yang Y; Liu S; Quan L; Yang Z; Wei Y; Ye W
    ACS Biomater Sci Eng; 2020 Apr; 6(4):2072-2083. PubMed ID: 33455341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of CO-releasing surface to enhance the blood compatibility and endothelialization of TiO
    Ma W; Liu X; Yang M; Hong Q; Meng L; Zhang Q; Chen J; Pan C
    Biomater Adv; 2023 Jun; 149():213393. PubMed ID: 36966654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel electrochemical strategy for improving blood compatibility of titanium-based biomaterials.
    Yang Y; Lai Y; Zhang Q; Wu K; Zhang L; Lin C; Tang P
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):309-13. PubMed ID: 20466524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of construction of TiO
    Huang Q; Yang Y; Zheng D; Song R; Zhang Y; Jiang P; Vogler EA; Lin C
    Acta Biomater; 2017 Mar; 51():505-512. PubMed ID: 28093367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemocompatibility of polyzwitterion-modified titanium dioxide nanotubes.
    Jia E; Liang B; Lin Y; Su Z
    Nanotechnology; 2021 May; 32(30):. PubMed ID: 33752184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallization of amorphous anodized TiO
    Wang Z; Chen K; Xue D
    RSC Adv; 2024 Mar; 14(12):8195-8203. PubMed ID: 38469199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemocompatibility of titania nanotube arrays.
    Smith BS; Yoriya S; Grissom L; Grimes CA; Popat KC
    J Biomed Mater Res A; 2010 Nov; 95(2):350-60. PubMed ID: 20629021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evaluation of the impact of titania nanotube covers morphology and crystal phase on their biological properties.
    Lewandowska Ż; Piszczek P; Radtke A; Jędrzejewski T; Kozak W; Sadowska B
    J Mater Sci Mater Med; 2015 Apr; 26(4):163. PubMed ID: 25791457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of crystalline phases of titania nanotube arrays on adipose derived stem cell adhesion and proliferation.
    Dias-Netipanyj MF; Cowden K; Sopchenski L; Cogo SC; Elifio-Esposito S; Popat KC; Soares P
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109850. PubMed ID: 31349471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro behavior of MC3T3-E1 preosteoblast with different annealing temperature titania nanotubes.
    Yu WQ; Zhang YL; Jiang XQ; Zhang FQ
    Oral Dis; 2010 Oct; 16(7):624-30. PubMed ID: 20604877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of serum proteins on titania nanotubes and its role on regulating adhesion and migration of mesenchymal stem cells.
    Wu S; Zhang D; Bai J; Zheng H; Deng J; Gou Z; Gao C
    J Biomed Mater Res A; 2020 Nov; 108(11):2305-2318. PubMed ID: 32363805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guided proliferation and bone-forming functionality on highly ordered large diameter TiO2 nanotube arrays.
    Zhang R; Wu H; Ni J; Zhao C; Chen Y; Zheng C; Zhang X
    Mater Sci Eng C Mater Biol Appl; 2015 Aug; 53():272-9. PubMed ID: 26042715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual effects and mechanism of TiO2 nanotube arrays in reducing bacterial colonization and enhancing C3H10T1/2 cell adhesion.
    Peng Z; Ni J; Zheng K; Shen Y; Wang X; He G; Jin S; Tang T
    Int J Nanomedicine; 2013; 8():3093-105. PubMed ID: 23983463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein interactions with layers of TiO
    Kulkarni M; Mazare A; Park J; Gongadze E; Killian MS; Kralj S; von der Mark K; Iglič A; Schmuki P
    Acta Biomater; 2016 Nov; 45():357-366. PubMed ID: 27581395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced interfacial adhesion and osseointegration of anodic TiO
    Hu N; Wu Y; Xie L; Yusuf SM; Gao N; Starink MJ; Tong L; Chu PK; Wang H
    Acta Biomater; 2020 Apr; 106():360-375. PubMed ID: 32058083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Titania nanotube arrays as interfaces for neural prostheses.
    Sorkin JA; Hughes S; Soares P; Popat KC
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():735-745. PubMed ID: 25687003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Titania nanotube arrays as interfaces for blood-contacting implantable devices: a study evaluating the nanotopography-associated activation and expression of blood plasma components.
    Smith BS; Popat KC
    J Biomed Nanotechnol; 2012 Aug; 8(4):642-58. PubMed ID: 22852474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Titanium dioxide nanotube films: Preparation, characterization and electrochemical biosensitivity towards alkaline phosphatase.
    Roman I; Trusca RD; Soare ML; Fratila C; Krasicka-Cydzik E; Stan MS; Dinischiotu A
    Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():374-82. PubMed ID: 24582263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on the anticorrosion, biocompatibility, and osteoinductivity of tantalum decorated with tantalum oxide nanotube array films.
    Wang N; Li H; Wang J; Chen S; Ma Y; Zhang Z
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4516-23. PubMed ID: 22894817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.