These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 31569007)

  • 1. Individualized prediction of depressive disorder in the elderly: A multitask deep learning approach.
    Xu Z; Zhang Q; Li W; Li M; Yip PSF
    Int J Med Inform; 2019 Dec; 132():103973. PubMed ID: 31569007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning framework for automatic diagnosis of unipolar depression.
    Mumtaz W; Qayyum A
    Int J Med Inform; 2019 Dec; 132():103983. PubMed ID: 31586827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multitask deep learning with dynamic task balancing for quantum mechanical properties prediction.
    Yang Z; Zhong W; Lv Q; Chen CY
    Phys Chem Chem Phys; 2022 Mar; 24(9):5383-5393. PubMed ID: 35169821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lung cancer survival period prediction and understanding: Deep learning approaches.
    Doppalapudi S; Qiu RG; Badr Y
    Int J Med Inform; 2021 Apr; 148():104371. PubMed ID: 33461009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep learning approach for acute liver failure prediction with combined fully connected and convolutional neural networks.
    Xie H; Wang B; Hong Y
    Technol Health Care; 2024; 32(S1):555-564. PubMed ID: 38759076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Right care, first time: a highly personalised and measurement-based care model to manage youth mental health.
    Hickie IB; Scott EM; Cross SP; Iorfino F; Davenport TA; Guastella AJ; Naismith SL; Carpenter JS; Rohleder C; Crouse JJ; Hermens DF; Koethe D; Markus Leweke F; Tickell AM; Sawrikar V; Scott J
    Med J Aust; 2019 Nov; 211 Suppl 9():S3-S46. PubMed ID: 31679171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating multi-task and cost-sensitive learning for predicting mortality risk of chronic diseases in the elderly using real-world data.
    Cheng A; Zhang Y; Qian Z; Yuan X; Yao S; Ni W; Zheng Y; Zhang H; Lu Q; Zhao Z
    Int J Med Inform; 2024 Nov; 191():105567. PubMed ID: 39068894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of 8-state protein secondary structures by a novel deep learning architecture.
    Zhang B; Li J; Lü Q
    BMC Bioinformatics; 2018 Aug; 19(1):293. PubMed ID: 30075707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining structured and unstructured data for predictive models: a deep learning approach.
    Zhang D; Yin C; Zeng J; Yuan X; Zhang P
    BMC Med Inform Decis Mak; 2020 Oct; 20(1):280. PubMed ID: 33121479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting hospital readmission for lupus patients: An RNN-LSTM-based deep-learning methodology.
    Reddy BK; Delen D
    Comput Biol Med; 2018 Oct; 101():199-209. PubMed ID: 30195164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting post-stroke pneumonia using deep neural network approaches.
    Ge Y; Wang Q; Wang L; Wu H; Peng C; Wang J; Xu Y; Xiong G; Zhang Y; Yi Y
    Int J Med Inform; 2019 Dec; 132():103986. PubMed ID: 31629312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep generative learning for automated EHR diagnosis of traditional Chinese medicine.
    Liang Z; Liu J; Ou A; Zhang H; Li Z; Huang JX
    Comput Methods Programs Biomed; 2019 Jun; 174():17-23. PubMed ID: 29801696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Food Contamination on Gastrointestinal Morbidity: Comparison of Different Machine-Learning Methods.
    Song Q; Zheng YJ; Yang J
    Int J Environ Res Public Health; 2019 Mar; 16(5):. PubMed ID: 30866562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Human Cytochrome P450 Inhibition Using a Multitask Deep Autoencoder Neural Network.
    Li X; Xu Y; Lai L; Pei J
    Mol Pharm; 2018 Oct; 15(10):4336-4345. PubMed ID: 29775322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting depression using a framework combining deep multimodal neural networks with a purpose-built automated evaluation.
    Victor E; Aghajan ZM; Sewart AR; Christian R
    Psychol Assess; 2019 Aug; 31(8):1019-1027. PubMed ID: 31045384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of machine learning approach to predict depression in the elderly in China: A longitudinal study.
    Su D; Zhang X; He K; Chen Y
    J Affect Disord; 2021 Mar; 282():289-298. PubMed ID: 33418381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ARPNet: Antidepressant Response Prediction Network for Major Depressive Disorder.
    Chang B; Choi Y; Jeon M; Lee J; Han KM; Kim A; Ham BJ; Kang J
    Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31703457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Rank Deep Convolutional Neural Network for Multitask Learning.
    Su F; Shang HY; Wang JY
    Comput Intell Neurosci; 2019; 2019():7410701. PubMed ID: 31236107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bagging and deep learning in optimal individualized treatment rules.
    Mi X; Zou F; Zhu R
    Biometrics; 2019 Jun; 75(2):674-684. PubMed ID: 30365175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smooth Bayesian network model for the prediction of future high-cost patients with COPD.
    Lin S; Zhang Q; Chen F; Luo L; Chen L; Zhang W
    Int J Med Inform; 2019 Jun; 126():147-155. PubMed ID: 31029256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.