These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 31569486)

  • 1. 3D-Printed Soft Structure of Polyurethane and Magnetorheological Fluid: A Proof-of-Concept Investigation of its Stiffness Tunability.
    Hong SW; Yoon JY; Kim SH; Lee SK; Kim YR; Park YJ; Kim GW; Choi SB
    Micromachines (Basel); 2019 Sep; 10(10):. PubMed ID: 31569486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field-Dependent Stiffness of a Soft Structure Fabricated from Magnetic-Responsive Materials: Magnetorheological Elastomer and Fluid.
    Song BK; Yoon JY; Hong SW; Choi SB
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable Young's Moduli of Soft Composites Fabricated from Magnetorheological Materials Containing Microsized Iron Particles.
    Yoon JY; Hong SW; Park YJ; Kim SH; Kim GW; Choi SB
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Tactile Device Generating Repulsive Forces of Various Human Tissues Fabricated from Magnetic-Responsive Fluid in Porous Polyurethane.
    Park YJ; Yoon JY; Kang BH; Kim GW; Choi SB
    Materials (Basel); 2020 Feb; 13(5):. PubMed ID: 32120835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Damping and Stiffness Analysis of Sandwich Beam with 3D-Printed Honeycomb Core Filled with Magnetorheological Elastomer (MRE): An Experimental Approach.
    Sharif U; Xiang X; Zhu M; Deng J; Sun J; Ibrahim DS; Adewale OO
    Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable Stiffness and Damping Study on Flexible PVC Cantilever Structure Embedded with MR Fluid.
    Ramkumar G; Gnanaprakasam AJ; Thirumarimurugan M
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-Printed Soft Sensors for Adaptive Sensing with Online and Offline Tunable Stiffness.
    He L; Herzig N; Nanayakkara T; Maiolino P
    Soft Robot; 2022 Dec; 9(6):1062-1073. PubMed ID: 35325579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Magnetic Field on Sound Transmission Loss of the Unit Filled with Magnetorheological Fluid.
    Xu X; Wang Y; Wang Y
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soft Ferrofluid Actuator Based on 3D-Printed Scaffold Removal.
    Shabaniverki S; Xie S; Ren J; Juárez JJ
    3D Print Addit Manuf; 2021 Apr; 8(2):126-135. PubMed ID: 36655058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stiffness memory nanohybrid scaffolds generated by indirect 3D printing for biologically responsive soft implants.
    Wu L; Virdee J; Maughan E; Darbyshire A; Jell G; Loizidou M; Emberton M; Butler P; Howkins A; Reynolds A; Boyd IW; Birchall M; Song W
    Acta Biomater; 2018 Oct; 80():188-202. PubMed ID: 30223094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional Printing of Continuous Flax Fiber-Reinforced Thermoplastic Composites by Five-Axis Machine.
    Zhang H; Liu D; Huang T; Hu Q; Lammer H
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32260222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the Potential of Commercial-Grade Carbon Black-Filled TPU for the 3D Printing of Compressive Sensors.
    Manganiello C; Naso D; Cupertino F; Fiume O; Percoco G
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30634586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional printing of freeform helical microstructures: a review.
    Farahani RD; Chizari K; Therriault D
    Nanoscale; 2014 Sep; 6(18):10470-85. PubMed ID: 25072812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Fully Multi-Material Three-Dimensional Printed Soft Gripper with Variable Stiffness for Robust Grasping.
    Zhu M; Mori Y; Wakayama T; Wada A; Kawamura S
    Soft Robot; 2019 Aug; 6(4):507-519. PubMed ID: 30973316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soft Actuators with Stiffness and Shape Modulation Using 3D-Printed Conductive Polylactic Acid Material.
    Al-Rubaiai M; Pinto T; Qian C; Tan X
    Soft Robot; 2019 Jun; 6(3):318-332. PubMed ID: 30855215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation.
    Matsuzaki R; Ueda M; Namiki M; Jeong TK; Asahara H; Horiguchi K; Nakamura T; Todoroki A; Hirano Y
    Sci Rep; 2016 Mar; 6():23058. PubMed ID: 26965201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printing of surgical instruments for long-duration space missions.
    Wong JY; Pfahnl AC
    Aviat Space Environ Med; 2014 Jul; 85(7):758-63. PubMed ID: 25022166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of Hard-Soft Microfluidic Devices Using Hybrid 3D Printing.
    Ruiz C; Kadimisetty K; Yin K; Mauk MG; Zhao H; Liu C
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32492980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidics as a Platform for the Analysis of 3D Printing Problems.
    Mendes R; Fanzio P; Campo-Deaño L; Galindo-Rosales FJ
    Materials (Basel); 2019 Sep; 12(17):. PubMed ID: 31484404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of 3D freeform porous tubular constructs with mechanical flexibility mimicking that of soft vascular tissue.
    Lee JE; Park SJ; Yoon Y; Son Y; Park SH
    J Mech Behav Biomed Mater; 2019 Mar; 91():193-201. PubMed ID: 30594061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.