BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 31569514)

  • 1. Pore Structure as a Response to the Freeze/Thaw Resistance of Mortars.
    Netinger Grubeša I; Marković B; Vračević M; Tunkiewicz M; Szenti I; Kukovecz Á
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31569514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the Size and Type of Pores on Brick Resistance to Freeze-Thaw Cycles.
    Netinger Grubeša I; Vračević M; Ducman V; Marković B; Szenti I; Kukovecz Á
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32842686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfate Freeze-Thaw Resistance of Magnesium Potassium Phosphate Cement Mortar.
    Yang B; Ji RJ; Lan Q; Yang JM; Xu J
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation Mechanism and Numerical Simulation of Pervious Concrete under Salt Freezing-Thawing Cycle.
    Xiang J; Liu H; Lu H; Gui F
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performances of Cement Mortar Incorporating Superabsorbent Polymer (SAP) Using Different Dosing Methods.
    Tan Y; Chen H; Wang Z; Xue C; He R
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31108848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of High-Dispersible Graphene on the Strength and Durability of Cement Mortars.
    Qi X; Zhang S; Wang T; Guo S; Ren R
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33671967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effects of Temperature Curing on the Strength Development, Transport Properties, and Freeze-Thaw Resistance of Blast Furnace Slag Cement Mortars Modified with Nanosilica.
    Federowicz K; Figueiredo VA; Al-Kroom H; Abdel-Gawwad HA; Abd Elrahman M; Sikora P
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33353196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Pore-Size Distribution on the Resistance of Clay Brick to Freeze-Thaw Cycles.
    Netinger Grubeša I; Vračević M; Ranogajec J; Vučetić S
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32455598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustainability development and performance evaluation of natural hydraulic lime mortar for restoration.
    Santhanam K; Ramadoss R
    Environ Sci Pollut Res Int; 2022 Nov; 29(52):79634-79648. PubMed ID: 35715672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Municipal Solid Waste Slag on the Durability of Cementitious Composites in Terms of Resistance to Freeze-Thaw Cycling.
    Thomas M; Ślosarczyk A
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Synthetic Limestone Sand on the Frost Resistance of Magnesium Potassium Phosphate Cement Mortar.
    Wu Q; Hou Y; Mei J; Yang J; Gan T
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation on the Mechanical Properties of a Cement-Based Material Containing Carbon Nanotube under Drying and Freeze-Thaw Conditions.
    Li WW; Ji WM; Wang YC; Liu Y; Shen RX; Xing F
    Materials (Basel); 2015 Dec; 8(12):8780-8792. PubMed ID: 28793745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of Calcium Sulfoaluminate Cement Mortar Modified by Hydroxyethyl Methyl Celluloses with Different Degrees of Substitution.
    Zhang S; Wang R; Xu L; Hecker A; Ludwig HM; Wang P
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33917726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental study and analytical model for the pore structure of epoxy latex-modified mortar.
    Li P; Lu W; An X; Zhou L; Han X; Du S; Wang C
    Sci Rep; 2022 Apr; 12(1):5822. PubMed ID: 35388135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical Properties and Durability of Lime-Cement Mortars Prepared with Water Containing Micro-Nano Bubbles of Various Gases.
    Grzegorczyk-Frańczak M; Barnat-Hunek D; Andrzejuk W; Zaburko J; Zalewska M; Łagód G
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33920358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Study on Mechanical Properties and Pore Structure Deterioration of Concrete under Freeze-Thaw Cycles.
    Zhang K; Zhou J; Yin Z
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recycled Cellulose Fiber Reinforced Plaster.
    Stevulova N; Vaclavik V; Hospodarova V; Dvorský T
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34072982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Freeze-Thaw Strength Evolution of Fiber-Reinforced Cement Mortar Based on NMR and Fractal Theory: Considering Porosity and Pore Distribution.
    Zhang C; Liu T; Jiang C; Chen Z; Zhou K; Chen L
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfate Freeze-Thaw Resistance of Magnesium Potassium Phosphate Cement Mortar according to Hydration Age.
    Ji RJ; Li T; Yang JM; Xu J
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Freeze-Thaw Cycles on Triaxial Strength Property Damage to Cement Improved Aeolian Sand (CIAS).
    Li J; Wang F; Yi F; Wu F; Liu J; Lin Z
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31480333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.