These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 31569549)
1. Rendering Wood Veneers Flexible and Electrically Conductive through Delignification and Electroless Ni Plating. Chen M; Zhou W; Chen J; Xu J Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31569549 [TBL] [Abstract][Full Text] [Related]
2. In-situ growth of electrically conductive MOFs in wood cellulose scaffold for flexible, robust and hydrophobic membranes with improved electrochemical performance. Wang Z; Sun B; Liao J; Cao S; Li L; Wang Q; Guo C Int J Biol Macromol; 2024 Jan; 255():127989. PubMed ID: 37977469 [TBL] [Abstract][Full Text] [Related]
3. Design of High-Performance Wearable Energy and Sensor Electronics from Fiber Materials. Chen Y; Xu B; Gong J; Wen J; Hua T; Kan CW; Deng J ACS Appl Mater Interfaces; 2019 Jan; 11(2):2120-2129. PubMed ID: 30571093 [TBL] [Abstract][Full Text] [Related]
4. Effect of Secondary Phase on Electroless Ni Plating Behaviour of Super Duplex Stainless Steel SAF2507 for Advanced Li-Ion Battery Case. Shin BH; Kim S; Park J; Ok JW; Kim DI; Kim D; Yoon JH Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541595 [TBL] [Abstract][Full Text] [Related]
5. Interconnecting Carbon Fibers with the In-situ Electrochemically Exfoliated Graphene as Advanced Binder-free Electrode Materials for Flexible Supercapacitor. Zou Y; Wang S Sci Rep; 2015 Jul; 5():11792. PubMed ID: 26149290 [TBL] [Abstract][Full Text] [Related]
7. A Bioinspired Interface Design for Improving the Strength and Electrical Conductivity of Graphene-Based Fibers. Ma T; Gao HL; Cong HP; Yao HB; Wu L; Yu ZY; Chen SM; Yu SH Adv Mater; 2018 Apr; 30(15):e1706435. PubMed ID: 29484728 [TBL] [Abstract][Full Text] [Related]
8. Layered-MnO₂ Nanosheet Grown on Nitrogen-Doped Graphene Template as a Composite Cathode for Flexible Solid-State Asymmetric Supercapacitor. Liu Y; Miao X; Fang J; Zhang X; Chen S; Li W; Feng W; Chen Y; Wang W; Zhang Y ACS Appl Mater Interfaces; 2016 Mar; 8(8):5251-60. PubMed ID: 26842681 [TBL] [Abstract][Full Text] [Related]
9. Copper-Plated Paper for High-Performance Lithium-Ion Batteries. Wang Z; Malti A; Ouyang L; Tu D; Tian W; Wågberg L; Hamedi MM Small; 2018 Nov; 14(48):e1803313. PubMed ID: 30328292 [TBL] [Abstract][Full Text] [Related]
10. Wood as a green and sustainable alternative for environmentally friendly & flexible electronic devices. Malik H; Niazi MBK; Miran W; Tawfeek AM; Jahan Z; Kamel EM; Ahmed N; Saeed Akhtar M Chemosphere; 2023 Sep; 336():139213. PubMed ID: 37331660 [TBL] [Abstract][Full Text] [Related]
11. Nickel molybdate nanorods supported on three-dimensional, porous nickel film coated on copper wire as an advanced binder-free electrode for flexible wire-type asymmetric micro-supercapacitors with enhanced electrochemical performances. Naderi L; Shahrokhian S J Colloid Interface Sci; 2019 Apr; 542():325-338. PubMed ID: 30763900 [TBL] [Abstract][Full Text] [Related]
12. Superflexible Wood. Song J; Chen C; Wang C; Kuang Y; Li Y; Jiang F; Li Y; Hitz E; Zhang Y; Liu B; Gong A; Bian H; Zhu JY; Zhang J; Li J; Hu L ACS Appl Mater Interfaces; 2017 Jul; 9(28):23520-23527. PubMed ID: 28661650 [TBL] [Abstract][Full Text] [Related]
13. Laser-Induced Graphene Formation on Wood. Ye R; Chyan Y; Zhang J; Li Y; Han X; Kittrell C; Tour JM Adv Mater; 2017 Oct; 29(37):. PubMed ID: 28737226 [TBL] [Abstract][Full Text] [Related]
14. Flexible 3D carbon cloth as a high-performing electrode for energy storage and conversion. Shi H; Wen G; Nie Y; Zhang G; Duan H Nanoscale; 2020 Mar; 12(9):5261-5285. PubMed ID: 32091524 [TBL] [Abstract][Full Text] [Related]
15. A Nature-Inspired, Flexible Substrate Strategy for Future Wearable Electronics. Zhu C; Chalmers E; Chen L; Wang Y; Xu BB; Li Y; Liu X Small; 2019 Aug; 15(35):e1902440. PubMed ID: 31215162 [TBL] [Abstract][Full Text] [Related]
16. A flexible and conductive metallic paper-based current collector with energy storage capability in supercapacitor electrodes. Li Y; Wang Q; Wang Y; Bai M; Shao J; Ji H; Feng H; Zhang J; Ma X; Zhao W Dalton Trans; 2019 Jun; 48(22):7659-7665. PubMed ID: 31049511 [TBL] [Abstract][Full Text] [Related]
17. Highly Flexible Graphene Derivative Hybrid Film: An Outstanding Nonflammable Thermally Conductive yet Electrically Insulating Material for Efficient Thermal Management. Vu MC; Kim IH; Choi WK; Lim CS; Islam MA; Kim SR ACS Appl Mater Interfaces; 2020 Jun; 12(23):26413-26423. PubMed ID: 32469197 [TBL] [Abstract][Full Text] [Related]
18. Nanocellulose toward Advanced Energy Storage Devices: Structure and Electrochemistry. Chen C; Hu L Acc Chem Res; 2018 Dec; 51(12):3154-3165. PubMed ID: 30299086 [TBL] [Abstract][Full Text] [Related]
19. Decorating Waste Cloth via Industrial Wastewater for Tube-Type Flexible and Wearable Sodium-Ion Batteries. Zhu YH; Yuan S; Bao D; Yin YB; Zhong HX; Zhang XB; Yan JM; Jiang Q Adv Mater; 2017 Apr; 29(16):. PubMed ID: 28230914 [TBL] [Abstract][Full Text] [Related]
20. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. Zhu H; Luo W; Ciesielski PN; Fang Z; Zhu JY; Henriksson G; Himmel ME; Hu L Chem Rev; 2016 Aug; 116(16):9305-74. PubMed ID: 27459699 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]