These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31569584)

  • 1. Lower Limb Locomotion Activity Recognition of Healthy Individuals Using Semi-Markov Model and Single Wearable Inertial Sensor.
    Li H; Derrode S; Pieczynski W
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gait Phase Detection for Lower-Limb Exoskeletons using Foot Motion Data from a Single Inertial Measurement Unit in Hemiparetic Individuals.
    Sánchez Manchola MD; Pinto Bernal MJ; Munera M; Cifuentes CA
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive Bayesian inference system for recognition of walking activities and prediction of gait events using wearable sensors.
    Martinez-Hernandez U; Dehghani-Sanij AA
    Neural Netw; 2018 Jun; 102():107-119. PubMed ID: 29567532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hidden Markov Model-Based Smart Annotation for Benchmark Cyclic Activity Recognition Database Using Wearables.
    Martindale CF; Sprager S; Eskofier BM
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 30995789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ambulatory Human Gait Phase Detection Using Wearable Inertial Sensors and Hidden Markov Model.
    Liu L; Wang H; Li H; Liu J; Qiu S; Zhao H; Guo X
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical Human Activity Recognition Using Wearable Sensors.
    Attal F; Mohammed S; Dedabrishvili M; Chamroukhi F; Oukhellou L; Amirat Y
    Sensors (Basel); 2015 Dec; 15(12):31314-38. PubMed ID: 26690450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards Wearable-Inertial-Sensor-Based Gait Posture Evaluation for Subjects with Unbalanced Gaits.
    Qiu S; Wang H; Li J; Zhao H; Wang Z; Wang J; Wang Q; Plettemeier D; Bärhold M; Bauer T; Ru B
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Locomotion Mode Recognition Algorithm Based on Gaussian Mixture Model Using IMU Sensors.
    Shin D; Lee S; Hwang S
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate recognition of lower limb ambulation mode based on surface electromyography and motion data using machine learning.
    Zhou B; Wang H; Hu F; Feng N; Xi H; Zhang Z; Tang H
    Comput Methods Programs Biomed; 2020 Sep; 193():105486. PubMed ID: 32402846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Machine Learning Pipeline for Gait Analysis in a Semi Free-Living Environment.
    Jung S; de l'Escalopier N; Oudre L; Truong C; Dorveaux E; Gorintin L; Ricard D
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ambulatory activity classification with dendogram-based support vector machine: Application in lower-limb active exoskeleton.
    Mazumder O; Kundu AS; Lenka PK; Bhaumik S
    Gait Posture; 2016 Oct; 50():53-59. PubMed ID: 27585182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Systematic Comparison of Age and Gender Prediction on IMU Sensor-Based Gait Traces.
    Van Hamme T; Garofalo G; Argones Rúa E; Preuveneers D; Joosen W
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31277389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the Accuracy of Wearable Sensors for Human Locomotion Tracking Using Phase-Locked Regression Models.
    Duong TTH; Zhang H; Lynch TS; Zanotto D
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():145-150. PubMed ID: 31374621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Method for Locomotion Mode Identification Using Muscle Synergies.
    Afzal T; Iqbal K; White G; Wright AB
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):608-617. PubMed ID: 27362983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of Surface Electromyography in Data Fusion with Inertial Sensors to Enhance Locomotion Recognition and Prediction.
    Meng L; Pang J; Wang Z; Xu R; Ming D
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity Recognition Invariant to Sensor Orientation with Wearable Motion Sensors.
    Yurtman A; Barshan B
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28792481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human Gait Activity Recognition Machine Learning Methods.
    Slemenšek J; Fister I; Geršak J; Bratina B; van Midden VM; Pirtošek Z; Šafarič R
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning based Human Gait Segmentation with Wearable Sensor Platform.
    Potluri S; Chandran AB; Diedrich C; Schega L
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():588-594. PubMed ID: 31945967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Review on Locomotion Mode Recognition and Prediction When Using Active Orthoses and Exoskeletons.
    Moreira L; Figueiredo J; Cerqueira J; Santos CP
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.