These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31569643)

  • 1. Promutagenicity of 8-Chloroguanine, A Major Inflammation-Induced Halogenated DNA Lesion.
    Kou Y; Koag MC; Lee S
    Molecules; 2019 Sep; 24(19):. PubMed ID: 31569643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for promutagenicity of 8-halogenated guanine.
    Koag MC; Min K; Lee S
    J Biol Chem; 2014 Feb; 289(9):6289-98. PubMed ID: 24425881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide.
    Freudenthal BD; Beard WA; Perera L; Shock DD; Kim T; Schlick T; Wilson SH
    Nature; 2015 Jan; 517(7536):635-9. PubMed ID: 25409153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-dependent conformational activation explains highly promutagenic replication across O6-methylguanine by human DNA polymerase β.
    Koag MC; Lee S
    J Am Chem Soc; 2014 Apr; 136(15):5709-21. PubMed ID: 24694247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evading the proofreading machinery of a replicative DNA polymerase: induction of a mutation by an environmental carcinogen.
    Perlow RA; Broyde S
    J Mol Biol; 2001 Jun; 309(2):519-36. PubMed ID: 11371169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutagenic Replication of the Major Oxidative Adenine Lesion 7,8-Dihydro-8-oxoadenine by Human DNA Polymerases.
    Koag MC; Jung H; Lee S
    J Am Chem Soc; 2019 Mar; 141(11):4584-4596. PubMed ID: 30817143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA polymerase minor groove interactions modulate mutagenic bypass of a templating 8-oxoguanine lesion.
    Freudenthal BD; Beard WA; Wilson SH
    Nucleic Acids Res; 2013 Feb; 41(3):1848-58. PubMed ID: 23267011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for proficient incorporation of dTTP opposite O6-methylguanine by human DNA polymerase iota.
    Pence MG; Choi JY; Egli M; Guengerich FP
    J Biol Chem; 2010 Dec; 285(52):40666-72. PubMed ID: 20961860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promutagenic bypass of 7,8-dihydro-8-oxoadenine by translesion synthesis DNA polymerase Dpo4.
    Jung H; Lee S
    Biochem J; 2020 Aug; 477(15):2859-2871. PubMed ID: 32686822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and Kinetic Studies of the Effect of Guanine N7 Alkylation and Metal Cofactors on DNA Replication.
    Kou Y; Koag MC; Lee S
    Biochemistry; 2018 Aug; 57(34):5105-5116. PubMed ID: 29957995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binary complex crystal structure of DNA polymerase β reveals multiple conformations of the templating 8-oxoguanine lesion.
    Batra VK; Shock DD; Beard WA; McKenna CE; Wilson SH
    Proc Natl Acad Sci U S A; 2012 Jan; 109(1):113-8. PubMed ID: 22178760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition-state destabilization reveals how human DNA polymerase β proceeds across the chemically unstable lesion N7-methylguanine.
    Koag MC; Kou Y; Ouzon-Shubeita H; Lee S
    Nucleic Acids Res; 2014 Jul; 42(13):8755-66. PubMed ID: 24966350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA polymerase structure-based insight on the mutagenic properties of 8-oxoguanine.
    Beard WA; Batra VK; Wilson SH
    Mutat Res; 2010 Nov; 703(1):18-23. PubMed ID: 20696268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unique active site promotes error-free replication opposite an 8-oxo-guanine lesion by human DNA polymerase iota.
    Kirouac KN; Ling H
    Proc Natl Acad Sci U S A; 2011 Feb; 108(8):3210-5. PubMed ID: 21300901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of DNA polymerase beta with the mutagenic DNA lesion 8-oxodeoxyguanine reveals structural insights into its coding potential.
    Krahn JM; Beard WA; Miller H; Grollman AP; Wilson SH
    Structure; 2003 Jan; 11(1):121-7. PubMed ID: 12517346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward understanding the mutagenicity of an environmental carcinogen: structural insights into nucleotide incorporation preferences.
    Perlow RA; Broyde S
    J Mol Biol; 2002 Sep; 322(2):291-309. PubMed ID: 12217692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of hoogsteen edge hydrogen bonding at template purines in nucleotide incorporation by human DNA polymerase iota.
    Johnson RE; Haracska L; Prakash L; Prakash S
    Mol Cell Biol; 2006 Sep; 26(17):6435-41. PubMed ID: 16914729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for the inefficient nucleotide incorporation opposite cisplatin-DNA lesion by human DNA polymerase β.
    Koag MC; Lai L; Lee S
    J Biol Chem; 2014 Nov; 289(45):31341-8. PubMed ID: 25237188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural insights into the bypass of the major deaminated purines by translesion synthesis DNA polymerase.
    Jung H; Hawkins M; Lee S
    Biochem J; 2020 Dec; 477(24):4797-4810. PubMed ID: 33258913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutagenic conformation of 8-oxo-7,8-dihydro-2'-dGTP in the confines of a DNA polymerase active site.
    Batra VK; Beard WA; Hou EW; Pedersen LC; Prasad R; Wilson SH
    Nat Struct Mol Biol; 2010 Jul; 17(7):889-90. PubMed ID: 20526335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.