These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 3157016)

  • 1. [Effect of adaptation to high altitude hypoxia on the development of structural changes in the resistance vessels of the spontaneously hypertensive rat].
    Koshelev VB; Pinelis VG; Vakulina TP; Markov KhM; Rodionov IM
    Kardiologiia; 1985 Jan; 25(1):80-4. PubMed ID: 3157016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Correction of NO-dependent cardiovascular disorders by adaptation to hypoxia].
    Mashina SIu; Smirin BV; Malyshev IIu; Liamina NP; Senchikhin VN; Pokidyshev DA; Manukhina EB
    Ross Fiziol Zh Im I M Sechenova; 2001 Jan; 87(1):110-7. PubMed ID: 11227854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional adaptation in the rat myocardium and coronary vascular bed caused by changes in pressure and volume load.
    Friberg P
    Acta Physiol Scand Suppl; 1985; 540():1-47. PubMed ID: 3161269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulmonary vascular reactivity in the spontaneously hypertensive rat.
    McMurtry IF; Petrun MD; Tucker A; Reeves JT
    Blood Vessels; 1979; 16(2):61-70. PubMed ID: 154932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age- and pressure-dependent changes of systemic resistance vessels concerning the relationships between geometric design, wall distensibility, vascular reactivity and smooth muscle sensitivity.
    Folkow B; Karlström G
    Acta Physiol Scand; 1984 Sep; 122(1):17-33. PubMed ID: 6507119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structurally based changes of renal vascular reactivity in spontaneously hypertensive and two-kidney, one-clip renal hypertensive rats, as compared with kidneys from uninephrectomized and intact normotensive rats.
    Göthberg G; Hallbäck-Nordlander M; Karlström G; Ricksten SE; Folkow B
    Acta Physiol Scand; 1983 May; 118(1):61-7. PubMed ID: 6624497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The hypoxic moderation of systemic hypertension in spontaneously hypertensive rats.
    Cai Y; Deng X; Zhou X; Zheng Y; Wang X; Liang B; Cai Q; Yang Y
    Chin Med Sci J; 1993 Sep; 8(3):125-8. PubMed ID: 8142625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Role of natriuresis in the prophylactic effect of adaptation to hypoxia in hereditary hypertension].
    Meerson FZ; Barbarash NA; Dvurechenskaia GIa; Prokina NS
    Kardiologiia; 1981 Jul; 21(7):25-32. PubMed ID: 7277945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vascular structure and smooth muscle contractility in experimental hypertension.
    Mulvany MJ
    J Cardiovasc Pharmacol; 1987; 10 Suppl 6():S79-85. PubMed ID: 2485033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is hypertrophy of the walls of pre-glomerular vessels responsible for hypertension in spontaneously hypertensive rats?
    Anderson WP
    Blood Press Suppl; 1994; 5():57-60. PubMed ID: 7889202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The role of preventing nitric oxide deficiency in the antihypertensive effect of adaptation to hypoxia].
    Mashina SIu; Smirin BV; Pokidyshev DA; Malyshev IIu; Liamina NP; Senchikin VN; Markov KhM; Manukhin EB
    Izv Akad Nauk Ser Biol; 2001; (5):579-87. PubMed ID: 15926321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Mechanism of the prophylactic effect of adaptation to altitude hypoxia on the development of hypertension].
    Meerson FZ; Barbarash NA; Shorpin IuP
    Kardiologiia; 1977 Dec; 17(12):71-9. PubMed ID: 599830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amplifier function of resistance vessels and the left ventricle in hypertension.
    Korner PI; Angus JA; Bobik A; Jennings GL
    J Hypertens Suppl; 1991 Dec; 9(2):S31-40; discussion S40-1. PubMed ID: 1838766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of chronic hypoxia on 45Ca and 86Rb uptake in aortic smooth muscle from spontaneously hypertensive rats (SHR).
    Behm R; Gerber B; Kovacs T
    Biomed Biochim Acta; 1989; 48(2-3):S269-73. PubMed ID: 2730622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative effects of indapamide and hydrochlorothiazide on cardiac hypertrophy and vascular smooth-muscle phenotype in the stroke-prone, spontaneously hypertensive rat.
    Contard F; Glukhova M; Sabri A; Marotte F; Sartore S; Narcisse G; Schatz C; Guez D; Rappaport L; Samuel JL
    J Cardiovasc Pharmacol; 1993; 22 Suppl 6():S29-34. PubMed ID: 7508058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The thyroid and hypoxic moderation of systemic hypertension in the spontaneously hypertensive rat.
    Henley WN; Tucker A; Tran TN; Stager JM
    Aviat Space Environ Med; 1987 Jun; 58(6):559-67. PubMed ID: 3606517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistance vessel structure: effects of treatment.
    Mulvany MJ
    J Cardiovasc Pharmacol; 1991; 17 Suppl 2():S58-63. PubMed ID: 1715487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of adaptation to the altitude hypoxia on catecholamine metabolism in rats with spontaneous hereditary hypertension].
    Barbarash NA; Dvurechenskaia GIa; Volina EV; Berdysheva LV; Putintseva TG
    Biull Eksp Biol Med; 1982 Jan; 93(1):22-4. PubMed ID: 7066498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exercise training attenuates cardiovascular adverse remodeling in adult ovariectomized spontaneously hypertensive rats.
    Marques CM; Nascimento FA; Mandarim-de-Lacerda CA; Aguila MB
    Menopause; 2006; 13(1):87-95. PubMed ID: 16607103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coronary vascular changes in the progression and regression of hypertensive heart disease.
    Strauer BE; Schwartzkopff B; Motz W; Vogt M
    J Cardiovasc Pharmacol; 1991; 18 Suppl 3():S20-7. PubMed ID: 1720480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.