These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The WHIM-like CXCR4(S338X) somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom's Macroglobulinemia. Cao Y; Hunter ZR; Liu X; Xu L; Yang G; Chen J; Patterson CJ; Tsakmaklis N; Kanan S; Rodig S; Castillo JJ; Treon SP Leukemia; 2015 Jan; 29(1):169-76. PubMed ID: 24912431 [TBL] [Abstract][Full Text] [Related]
3. CXCR4 WHIM-like frameshift and nonsense mutations promote ibrutinib resistance but do not supplant MYD88(L265P) -directed survival signalling in Waldenström macroglobulinaemia cells. Cao Y; Hunter ZR; Liu X; Xu L; Yang G; Chen J; Tsakmaklis N; Kanan S; Castillo JJ; Treon SP Br J Haematol; 2015 Mar; 168(5):701-7. PubMed ID: 25371371 [TBL] [Abstract][Full Text] [Related]
4. Ibrutinib Monotherapy in Symptomatic, Treatment-Naïve Patients With Waldenström Macroglobulinemia. Treon SP; Gustine J; Meid K; Yang G; Xu L; Liu X; Demos M; Kofides A; Tsakmaklis N; Chen JG; Munshi M; Chan G; Dubeau T; Raje N; Yee A; O'Donnell E; Hunter ZR; Castillo JJ J Clin Oncol; 2018 Sep; 36(27):2755-2761. PubMed ID: 30044692 [TBL] [Abstract][Full Text] [Related]
5. Ibrutinib in previously treated Waldenström's macroglobulinemia. Treon SP; Tripsas CK; Meid K; Warren D; Varma G; Green R; Argyropoulos KV; Yang G; Cao Y; Xu L; Patterson CJ; Rodig S; Zehnder JL; Aster JC; Harris NL; Kanan S; Ghobrial I; Castillo JJ; Laubach JP; Hunter ZR; Salman Z; Li J; Cheng M; Clow F; Graef T; Palomba ML; Advani RH N Engl J Med; 2015 Apr; 372(15):1430-40. PubMed ID: 25853747 [TBL] [Abstract][Full Text] [Related]
6. CXCR4 mutations affect presentation and outcomes in patients with Waldenström macroglobulinemia: A systematic review. Castillo JJ; Moreno DF; Arbelaez MI; Hunter ZR; Treon SP Expert Rev Hematol; 2019 Oct; 12(10):873-881. PubMed ID: 31343930 [No Abstract] [Full Text] [Related]
7. MYD88 Mutations and Response to Ibrutinib in Waldenström's Macroglobulinemia. Treon SP; Xu L; Hunter Z N Engl J Med; 2015 Aug; 373(6):584-6. PubMed ID: 26244327 [No Abstract] [Full Text] [Related]
8. Genomics, Signaling, and Treatment of Waldenström Macroglobulinemia. Hunter ZR; Yang G; Xu L; Liu X; Castillo JJ; Treon SP J Clin Oncol; 2017 Mar; 35(9):994-1001. PubMed ID: 28294689 [TBL] [Abstract][Full Text] [Related]
9. Dual NAMPT and BTK Targeting Leads to Synergistic Killing of Waldenström Macroglobulinemia Cells Regardless of MYD88 and CXCR4 Somatic Mutation Status. Cea M; Cagnetta A; Acharya C; Acharya P; Tai YT; Yang C; Lovera D; Soncini D; Miglino M; Fraternali-Orcioni G; Mastracci L; Nencioni A; Montecucco F; Monacelli F; Ballestrero A; Hideshima T; Chauhan D; Gobbi M; Lemoli RM; Munshi N; Treon SP; Anderson KC Clin Cancer Res; 2016 Dec; 22(24):6099-6109. PubMed ID: 27287071 [TBL] [Abstract][Full Text] [Related]
10. Working Toward a Genomic Prognostic Classification of Waldenström Macroglobulinemia: C-X-C Chemokine Receptor Type 4 Mutation and Beyond. Magierowicz M; Tomowiak C; Leleu X; Poulain S Hematol Oncol Clin North Am; 2018 Oct; 32(5):753-763. PubMed ID: 30190015 [TBL] [Abstract][Full Text] [Related]
11. Response to ibrutinib in a patient with IgG lymphoplasmacytic lymphoma carrying the MYD88 L265P gene mutation. Castillo JJ; Ghobrial IM; Treon SP Leuk Lymphoma; 2016 Nov; 57(11):2699-701. PubMed ID: 26980069 [No Abstract] [Full Text] [Related]
12. TP53 mutations are associated with mutated MYD88 and CXCR4, and confer an adverse outcome in Waldenström macroglobulinaemia. Gustine JN; Tsakmaklis N; Demos MG; Kofides A; Chen JG; Liu X; Munshi M; Guerrera ML; Chan GG; Patterson CJ; Meid K; Dubeau T; Yang G; Hunter ZR; Treon SP; Castillo JJ; Xu L Br J Haematol; 2019 Jan; 184(2):242-245. PubMed ID: 30183082 [TBL] [Abstract][Full Text] [Related]
13. Cell-free DNA analysis for detection of MYD88 Demos MG; Hunter ZR; Xu L; Tsakmaklis N; Kofides A; Munshi M; Liu X; Guerrera ML; Leventoff CR; White TP; Flynn CA; Meid K; Patterson CJ; Yang G; Branagan AR; Sarosiek S; Castillo JJ; Treon SP; Gustine JN Am J Hematol; 2021 Jul; 96(7):E250-E253. PubMed ID: 33819355 [No Abstract] [Full Text] [Related]
15. Identification of robust predictors for ibrutinib response by multiomics in MYD88-mutated Waldenström macroglobulinemia. Richardson K; Castillo JJ; Sarosiek SR; Branagan AR; Flynn CA; Meid K; Gustine JN; Liu X; Kofides A; Liu S; Wolf JL; Kacena KA; Patterson CJ; Guerrera ML; Tsakmaklis N; Treon SP; Hunter ZR Blood Adv; 2024 May; 8(9):2133-2137. PubMed ID: 38237078 [No Abstract] [Full Text] [Related]
16. Future therapeutic options for patients with Waldenström macroglobulinemia. Castillo JJ; Hunter ZR; Yang G; Argyropoulos K; Palomba ML; Treon SP Best Pract Res Clin Haematol; 2016 Jun; 29(2):206-215. PubMed ID: 27825467 [TBL] [Abstract][Full Text] [Related]
17. A head-to-head Phase III study comparing zanubrutinib versus ibrutinib in patients with Waldenström macroglobulinemia. Tam CS; LeBlond V; Novotny W; Owen RG; Tedeschi A; Atwal S; Cohen A; Huang J; Buske C Future Oncol; 2018 Sep; 14(22):2229-2237. PubMed ID: 29869556 [TBL] [Abstract][Full Text] [Related]
18. Zanubrutinib for the treatment of Waldenström Macroglobulinemia. Lim KJC; Tam CS Expert Rev Hematol; 2020 Dec; 13(12):1303-1310. PubMed ID: 33297772 [No Abstract] [Full Text] [Related]
19. Genomic Landscape of Waldenström Macroglobulinemia and Its Impact on Treatment Strategies. Treon SP; Xu L; Guerrera ML; Jimenez C; Hunter ZR; Liu X; Demos M; Gustine J; Chan G; Munshi M; Tsakmaklis N; Chen JG; Kofides A; Sklavenitis-Pistofidis R; Bustoros M; Keezer A; Meid K; Patterson CJ; Sacco A; Roccaro A; Branagan AR; Yang G; Ghobrial IM; Castillo JJ J Clin Oncol; 2020 Apr; 38(11):1198-1208. PubMed ID: 32083995 [TBL] [Abstract][Full Text] [Related]
20. Detection of the MYD88 Wu YY; Jia MN; Cai H; Qiu Y; Zhou DB; Li J; Cao XX Ann Hematol; 2020 Aug; 99(8):1763-1769. PubMed ID: 32577844 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]