BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31570774)

  • 1. Machine-based detection and classification for bone marrow aspirate differential counts: initial development focusing on nonneoplastic cells.
    Chandradevan R; Aljudi AA; Drumheller BR; Kunananthaseelan N; Amgad M; Gutman DA; Cooper LAD; Jaye DL
    Lab Invest; 2020 Jan; 100(1):98-109. PubMed ID: 31570774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Automated Pipeline for Differential Cell Counts on Whole-Slide Bone Marrow Aspirate Smears.
    Lewis JE; Shebelut CW; Drumheller BR; Zhang X; Shanmugam N; Attieh M; Horwath MC; Khanna A; Smith GH; Gutman DA; Aljudi A; Cooper LAD; Jaye DL
    Mod Pathol; 2023 Feb; 36(2):100003. PubMed ID: 36853796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Machine Learning Tool Using Digital Microscopy (Morphogo) for the Identification of Abnormal Lymphocytes in the Bone Marrow.
    Tang G; Fu X; Wang Z; Chen M
    Acta Cytol; 2021; 65(4):354-357. PubMed ID: 34350848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphogo: An Automatic Bone Marrow Cell Classification System on Digital Images Analyzed by Artificial Intelligence.
    Fu X; Fu M; Li Q; Peng X; Lu J; Fang F; Chen M
    Acta Cytol; 2020; 64(6):588-596. PubMed ID: 32721953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing classification of cells procured from bone marrow aspirate smears using generative adversarial networks and sequential convolutional neural network.
    Hazra D; Byun YC; Kim WJ
    Comput Methods Programs Biomed; 2022 Sep; 224():107019. PubMed ID: 35878483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing and Preliminary Validating an Automatic Cell Classification System for Bone Marrow Smears: a Pilot Study.
    Jin H; Fu X; Cao X; Sun M; Wang X; Zhong Y; Yang S; Qi C; Peng B; He X; He F; Jiang Y; Gao H; Li S; Huang Z; Li Q; Fang F; Zhang J
    J Med Syst; 2020 Sep; 44(10):184. PubMed ID: 32894360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of touch imprints with aspirate smears for evaluating bone marrow specimens.
    Aboul-Nasr R; Estey EH; Kantarjian HM; Freireich EJ; Andreeff M; Johnson BJ; Albitar M
    Am J Clin Pathol; 1999 Jun; 111(6):753-8. PubMed ID: 10361510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CDC-NET: a cell detection and confirmation network of bone marrow aspirate images for the aided diagnosis of AML.
    Su J; Liu Y; Zhang J; Han J; Song J
    Med Biol Eng Comput; 2024 Feb; 62(2):575-589. PubMed ID: 37953336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of an open-source machine-learning tool to quantify bone marrow plasma cells.
    Baranova K; Tran C; Plantinga P; Sangle N
    J Clin Pathol; 2021 Jul; 74(7):462-468. PubMed ID: 33952591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. White blood cell differential count of maturation stages in bone marrow smear using dual-stage convolutional neural networks.
    Choi JW; Ku Y; Yoo BW; Kim JA; Lee DS; Chai YJ; Kong HJ; Kim HC
    PLoS One; 2017; 12(12):e0189259. PubMed ID: 29228051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A segmentation method based on HMRF for the aided diagnosis of acute myeloid leukemia.
    Su J; Liu S; Song J
    Comput Methods Programs Biomed; 2017 Dec; 152():115-123. PubMed ID: 29054251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated Bone Marrow Cell Classification for Haematological Disease Diagnosis Using Siamese Neural Network.
    Ananthakrishnan B; Shaik A; Akhouri S; Garg P; Gadag V; Kavitha MS
    Diagnostics (Basel); 2022 Dec; 13(1):. PubMed ID: 36611404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification of acute myeloid leukemia M1 and M2 subtypes using machine learning.
    Liu K; Hu J
    Comput Biol Med; 2022 Aug; 147():105741. PubMed ID: 35738057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images.
    William W; Ware A; Basaza-Ejiri AH; Obungoloch J
    Comput Methods Programs Biomed; 2018 Oct; 164():15-22. PubMed ID: 30195423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bridging the gap between prostate radiology and pathology through machine learning.
    Bhattacharya I; Lim DS; Aung HL; Liu X; Seetharaman A; Kunder CA; Shao W; Soerensen SJC; Fan RE; Ghanouni P; To'o KJ; Brooks JD; Sonn GA; Rusu M
    Med Phys; 2022 Aug; 49(8):5160-5181. PubMed ID: 35633505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Hematologist-Level Deep Learning Algorithm (BMSNet) for Assessing the Morphologies of Single Nuclear Balls in Bone Marrow Smears: Algorithm Development.
    Wu YY; Huang TC; Ye RH; Fang WH; Lai SW; Chang PY; Liu WN; Kuo TY; Lee CH; Tsai WC; Lin C
    JMIR Med Inform; 2020 Apr; 8(4):e15963. PubMed ID: 32267237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Routine blood biomarkers for the detection of multiple myeloma using machine learning.
    Fan G; Cui R; Zhang R; Zhang S; Guo R; Zhai Y; Yue Y; Wang Q
    Int J Lab Hematol; 2022 Jun; 44(3):558-566. PubMed ID: 35199461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Only prolonged time from abstraction found to affect viable nucleated cell concentrations in vertebral body bone marrow aspirate.
    Badrinath R; Bohl DD; Hustedt JW; Webb ML; Grauer JN
    Spine J; 2014 Jun; 14(6):990-5. PubMed ID: 24184640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning for bone marrow cell detection and classification on whole-slide images.
    Wang CW; Huang SC; Lee YC; Shen YJ; Meng SI; Gaol JL
    Med Image Anal; 2022 Jan; 75():102270. PubMed ID: 34710655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated classification of benign and malignant lesions in
    Perk T; Bradshaw T; Chen S; Im HJ; Cho S; Perlman S; Liu G; Jeraj R
    Phys Med Biol; 2018 Nov; 63(22):225019. PubMed ID: 30457118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.