BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 31571017)

  • 1. Multiple integration of the gene ganA into the Bacillus subtilis chromosome for enhanced β-galactosidase production using the CRISPR/Cas9 system.
    Watzlawick H; Altenbuchner J
    AMB Express; 2019 Sep; 9(1):158. PubMed ID: 31571017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fragment Exchange Plasmid Tools for CRISPR/Cas9-Mediated Gene Integration and Protease Production in Bacillus subtilis.
    García-Moyano A; Larsen Ø; Gaykawad S; Christakou E; Boccadoro C; Puntervoll P; Bjerga GEK
    Appl Environ Microbiol; 2020 Dec; 87(1):. PubMed ID: 33097498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J
    Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase.
    Li K; Cai D; Wang Z; He Z; Chen S
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330178
    [No Abstract]   [Full Text] [Related]  

  • 5. Barriers to simultaneous multilocus integration in Bacillus subtilis tumble down: development of a straightforward screening method for the colorimetric detection of one-step multiple gene insertion using the CRISPR-Cas9 system.
    Ferrando J; Filluelo O; Zeigler DR; Picart P
    Microb Cell Fact; 2023 Jan; 22(1):21. PubMed ID: 36721198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Programmed gRNA Removal System for CRISPR-Cas9-Mediated Multi-Round Genome Editing in
    Lim H; Choi SK
    Front Microbiol; 2019; 10():1140. PubMed ID: 31164882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Construction of Portable CRISPR-Cpf1-Mediated Genome Editing in
    Hao W; Suo F; Lin Q; Chen Q; Zhou L; Liu Z; Cui W; Zhou Z
    Front Bioeng Biotechnol; 2020; 8():524676. PubMed ID: 32984297
    [No Abstract]   [Full Text] [Related]  

  • 8. Development of inducer-free expression plasmids based on IPTG-inducible promoters for Bacillus subtilis.
    Tran DTM; Phan TTP; Huynh TK; Dang NTK; Huynh PTK; Nguyen TM; Truong TTT; Tran TL; Schumann W; Nguyen HD
    Microb Cell Fact; 2017 Jul; 16(1):130. PubMed ID: 28743271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overproduction of Bacillus amyloliquefaciens extracellular glutamyl-endopeptidase as a result of ectopic multi-copy insertion of an efficiently-expressed mpr gene into the Bacillus subtilis chromosome.
    Yomantas YA; Abalakina EG; Golubeva LI; Gorbacheva LY; Mashko SV
    Microb Cell Fact; 2011 Aug; 10():64. PubMed ID: 21819557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the ganSPQAB Operon in Degradation of Galactan by Bacillus subtilis.
    Watzlawick H; Morabbi Heravi K; Altenbuchner J
    J Bacteriol; 2016 Oct; 198(20):2887-96. PubMed ID: 27501980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Programmable CRISPR/Cas9 Toolkit Improves Lycopene Production in Bacillus subtilis.
    Liu Y; Cheng H; Li H; Zhang Y; Wang M
    Appl Environ Microbiol; 2023 Jun; 89(6):e0023023. PubMed ID: 37272803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel combined Cre-Cas system for improved chromosome editing in Bacillus subtilis.
    Cai MZ; Chen PT
    J Biosci Bioeng; 2021 Aug; 132(2):113-119. PubMed ID: 33994114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrative vector for constructing single-copy translational fusions between regulatory regions of Bacillus subtilis and the bgaB reporter gene encoding a heat-stable beta-galactosidase.
    Stoss O; Mogk A; Schumann W
    FEMS Microbiol Lett; 1997 May; 150(1):49-54. PubMed ID: 9163905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibiotic-free production of sucrose isomerase in Bacillus subtilis by genome integration.
    Li M; Xu M; Bai X; Wan X; Zhao M; Li X; Chen X; Wang C; Yang F
    Biotechnol Lett; 2024 Jun; ():. PubMed ID: 38847981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overproduction of Rummeliibacillus pycnus arginase with multi-copy insertion of the arg
    Huang K; Zhang T; Jiang B; Yan X; Mu W; Miao M
    Appl Microbiol Biotechnol; 2017 Aug; 101(15):6039-6048. PubMed ID: 28664323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis.
    Hong KQ; Liu DY; Chen T; Wang ZW
    World J Microbiol Biotechnol; 2018 Sep; 34(10):153. PubMed ID: 30269229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preloading budding yeast with all-in-one CRISPR/Cas9 vectors for easy and high-efficient genome editing.
    Degreif D; Kremenovic M; Geiger T; Bertl A
    J Biol Methods; 2018; 5(3):e98. PubMed ID: 31453248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of lacZ gene fusions to determine the dependence pattern of the sporulation gene spoIID in spo mutants of Bacillus subtilis.
    Clarke S; Lopez-Diaz I; Mandelstam J
    J Gen Microbiol; 1986 Nov; 132(11):2987-94. PubMed ID: 3114421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrative vectors for constructing single-copy transcriptional fusions between Bacillus subtilis promoters and various reporter genes encoding heat-stable enzymes.
    Mogk A; Hayward R; Schumann W
    Gene; 1996 Dec; 182(1-2):33-6. PubMed ID: 8982064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of expression of genes coding for small, acid-soluble proteins of Bacillus subtilis spores: studies using lacZ gene fusions.
    Mason JM; Hackett RH; Setlow P
    J Bacteriol; 1988 Jan; 170(1):239-44. PubMed ID: 3121585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.