These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
405 related articles for article (PubMed ID: 31571125)
1. Antarctic tundra soil metagenome as useful natural resources of cold-active lignocelluolytic enzymes. Oh HN; Park D; Seong HJ; Kim D; Sul WJ J Microbiol; 2019 Oct; 57(10):865-873. PubMed ID: 31571125 [TBL] [Abstract][Full Text] [Related]
2. Metagenomic SMRT Sequencing-Based Exploration of Novel Lignocellulose-Degrading Capability in Wood Detritus from Torreya nucifera in Bija Forest on Jeju Island. Oh HN; Lee TK; Park JW; No JH; Kim D; Sul WJ J Microbiol Biotechnol; 2017 Sep; 27(9):1670-1680. PubMed ID: 28633514 [TBL] [Abstract][Full Text] [Related]
3. Potential of semiarid soil from Caatinga biome as a novel source for mining lignocellulose-degrading enzymes. Lacerda Júnior GV; Noronha MF; de Sousa ST; Cabral L; Domingos DF; Sáber ML; de Melo IS; Oliveira VM FEMS Microbiol Ecol; 2017 Feb; 93(2):. PubMed ID: 27986827 [TBL] [Abstract][Full Text] [Related]
4. Microbial carbohydrate active enzyme (CAZyme) genes and diversity from Menagesha Suba natural forest soils of Ethiopia as revealed by shotgun metagenomic sequencing. Sime AM; Kifle BA; Woldesemayat AA; Gemeda MT BMC Microbiol; 2024 Aug; 24(1):285. PubMed ID: 39090559 [TBL] [Abstract][Full Text] [Related]
5. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. Wilhelm RC; Singh R; Eltis LD; Mohn WW ISME J; 2019 Feb; 13(2):413-429. PubMed ID: 30258172 [TBL] [Abstract][Full Text] [Related]
6. Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation. Xu B; Xu W; Li J; Dai L; Xiong C; Tang X; Yang Y; Mu Y; Zhou J; Ding J; Wu Q; Huang Z BMC Genomics; 2015 Mar; 16(1):174. PubMed ID: 25887697 [TBL] [Abstract][Full Text] [Related]
7. Lignocellulolytic systems of soil bacteria: A vast and diverse toolbox for biotechnological conversion processes. López-Mondéjar R; Algora C; Baldrian P Biotechnol Adv; 2019 Nov; 37(6):107374. PubMed ID: 30910513 [TBL] [Abstract][Full Text] [Related]
8. Exploring the Antarctic soil metagenome as a source of novel cold-adapted enzymes and genetic mobile elements. Berlemont R; Pipers D; Delsaute M; Angiono F; Feller G; Galleni M; Power P Rev Argent Microbiol; 2011; 43(2):94-103. PubMed ID: 21731970 [TBL] [Abstract][Full Text] [Related]
9. Metagenomic Insight into Lignocellulose Degradation of the Thermophilic Microbial Consortium TMC7. Wang Y; Wang C; Chen Y; Chen B; Guo P; Cui Z J Microbiol Biotechnol; 2021 Aug; 31(8):1123-1133. PubMed ID: 34226407 [TBL] [Abstract][Full Text] [Related]
10. Identification of Genes Conferring Tolerance to Lignocellulose-Derived Inhibitors by Functional Selections in Soil Metagenomes. Forsberg KJ; Patel S; Witt E; Wang B; Ellison TD; Dantas G Appl Environ Microbiol; 2016 Jan; 82(2):528-37. PubMed ID: 26546427 [TBL] [Abstract][Full Text] [Related]
11. Metagenomic insights into lignocellulose-degrading genes through Illumina-based de novo sequencing of the microbiome in Vietnamese native goats' rumen. Do TH; Le NG; Dao TK; Nguyen TMP; Le TL; Luu HL; Nguyen KHV; Nguyen VL; Le LA; Phung TN; van Straalen NM; Roelofs D; Truong NH J Gen Appl Microbiol; 2018 Jul; 64(3):108-116. PubMed ID: 29526926 [TBL] [Abstract][Full Text] [Related]
12. Insight into Dominant Cellulolytic Bacteria from Two Biogas Digesters and Their Glycoside Hydrolase Genes. Wei Y; Zhou H; Zhang J; Zhang L; Geng A; Liu F; Zhao G; Wang S; Zhou Z; Yan X PLoS One; 2015; 10(6):e0129921. PubMed ID: 26070087 [TBL] [Abstract][Full Text] [Related]
13. Exploring the Lignin Catabolism Potential of Soil-Derived Lignocellulolytic Microbial Consortia by a Gene-Centric Metagenomic Approach. Díaz-García L; Bugg TDH; Jiménez DJ Microb Ecol; 2020 Nov; 80(4):885-896. PubMed ID: 32572536 [TBL] [Abstract][Full Text] [Related]
15. Lignocellulose degradation at the holobiont level: teamwork in a keystone soil invertebrate. Bredon M; Dittmer J; Noël C; Moumen B; Bouchon D Microbiome; 2018 Sep; 6(1):162. PubMed ID: 30223906 [TBL] [Abstract][Full Text] [Related]
16. Isolation, characterization and transcriptome analysis of a novel Antarctic Aspergillus sydowii strain MS-19 as a potential lignocellulosic enzyme source. Cong B; Wang N; Liu S; Liu F; Yin X; Shen J BMC Microbiol; 2017 May; 17(1):129. PubMed ID: 28558650 [TBL] [Abstract][Full Text] [Related]
17. Mining biomass-degrading genes through Illumina-based de novo sequencing and metagenomic analysis of free-living bacteria in the gut of the lower termite Coptotermes gestroi harvested in Vietnam. Do TH; Nguyen TT; Nguyen TN; Le QG; Nguyen C; Kimura K; Truong NH J Biosci Bioeng; 2014 Dec; 118(6):665-71. PubMed ID: 24928651 [TBL] [Abstract][Full Text] [Related]
18. Composting-Like Conditions Are More Efficient for Enrichment and Diversity of Organisms Containing Cellulase-Encoding Genes than Submerged Cultures. Heiss-Blanquet S; Fayolle-Guichard F; Lombard V; Hébert A; Coutinho PM; Groppi A; Barre A; Henrissat B PLoS One; 2016; 11(12):e0167216. PubMed ID: 27936240 [TBL] [Abstract][Full Text] [Related]